1. About Coupling

SRJ Specifications

Appendix

TBI MOTION Linear Guideway Inquiry Form

A. Linear Guide

1. About Linear Guide

Features of TBI MOTION Linear Guide

1-1 Features of TBIMOTION Linear Guide

1-1-1 High Accuracy
Because linear guide has little friction resistance, only a small driving force is needed to move the load. Low frictional resistance helps the temperature rising effect be small. Thus, the frictional resistance is decreased and the accuracy could be maintained for long period than traditional slide system.

1-1-2 High Rigidity

The design of Linear Guide rail and block features an equal lead rating in all four directions that request sufficient rigidity load in all directions, and self-aligning capability to absorb installation-error. Moreover, a sufficient preload can be achieved to increase rigidity and makes it suitable for any kind of installation.

1-1-3 Easy for Maintenance

Compared with high-skill required scrapping process of traditional slide system, the Linear Guide can offer high precision even if the mounting surface is machined by milling or grinding. Moreover the interchangeability of Linear Guide gives a convenience for installation and future maintenance.

1-1-4 High Speed

Linear Guide block, rail and ball apply by contact point of Rolling system. Due to the characteristic of low frictional resistance, the required driving force is much lower than that in other systems, thus the power consumption is small. Moreover, the temperature rising effect is small even under high speed operation.

1-1-5 High Performance without Clearance (see Table 1.1.1 \qquad

Table 1.1.1
Characteristics, Performance

Two trains of balls.
In a Gothic-arch groove, each ball contacts
the raceway at four points $45^{\circ}-45^{\circ}$.
It has constant contact point between ball
and arc groove.
Rigidity has high stability.
Two-row design is able to perform an equal
load rating in four directions.

Four trains of balls.
The circular-arc groove has two contact
points at 45

features an equal load rating in all four
directions with high rigidity.
Four-row design is able to perform an equal
load rating in four directions.
Self-Aligning to absorb installation-error.

The Contract table of four-row design with equal load rating and two-row Gothic design.

Fig 1.1.1 Four-Row Equal Load Ratting Design

As shown in the diagrams, each time the ball rolls, a slip occurs in an amount equal to the difference between the circumferences of the inner and outer surfaces of the ball in contact with the raceway ($\pi \mathrm{d}_{1}$) and ($\pi \mathrm{d}_{2}$). (This slip is called the differential slip). When the circumferential difference is too large, a slip occurs when the ball rolls. The friction coefficient between the ball and the raceway is several times greater when slip occurs than when there s no slip and frictional resistance increases substantially. Even under a preload or regular load, the ball and raceway contact one another at two points in the loading direction, as shown. Thus the difference between d_{1} and d_{2} can be small, as can the differential slip This design gives rise to a smooth rolling motion

1-2 The Procedure of Select Linear Guide

1-2-1 Flowchart

1－3 Basic Load Rating and Service Life of Linear Guide

When determining a model that would best suit your service conditions for a linear motion system，the load carrying capacity and service life of the model must be considered．To consider the load carrying capacity you should know the static safety factor of the model calculated based on the basic static load rating．Service life can be assessed by calculating the nominal life based on the basic dynamic load rating and checking to see if the values thus obtained meet your requirements．

The service life of a linear motion system refers to the total running distance that the linear motion system travels until flaking（the disintegration of a metal surface in scale－like pieces） occurs there to as a result of the rolling fatigue of the material caused by repeated stress on raceways and rolling elements．

Basic Load Rating：There are two basic load ratings for linear motion systems ：basic static load rating（Co），which sets the static permissible limits，and basic dynamic load rating（C）．

1－3－1 Basic Static Load Rating（Co）
If a linear motion system，whether at rest or in motion，receives an excessive load or a large impact，a localized permanent set develops between the raceway and rolling elements．If the magnitude of the permanent set exceeds a certain limit，it hinders the smooth motion of the liner motion system．

The basic static load rating refers to a static load in a given direction with given magnitude such that the sum of the permanent set of the rolling elements and that of the raceway at the contact area under the most stress is 0.0001 times greater than the rolling element diameter． In linear motion systems，the basic static load rating is defined as the radial load．Thus the basic static load rating provides a limit on the static permissible load．

1－3－2 Basic Permissible Moment（ $\mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$ ） When a Linear Guide gets a force that makes the balls distorted to $1 / 10,000$ of their diameter， we call the force as basic static permissible moment．Values of Mx，My，Mz are shown on Fig1．3．1，which suggest 3 axes of moment on a Linear Guide slide．

1－3－3 Static Safety Factor fs
A linear motion system may possibly receive an unpredictable external force due to vibration and impact while it is at rest or is moving or due to inertia resulting from start and stop．It is therefore necessary to consider the static safety factor against operating loads like these．The static safety factor（ f_{s} ）indicates the ratio of a linear motion system load carrying capacity【 basic static load rating Co_{o} 】 to the load exerted there on．

To calculate a load exerted on the Linear Guide，the mean load necessary for calculating the service life and the maximum load necessary for calculating the static safety factor must be obtained in advance．In a system that is subjected to frequent starts and stops and is placed under machining loads，and one upon which a moment due to an overhang load is forcefully exerted，an excessive，load greater than expected may develop．When selecting the correct type of Linear Guide for your purpose，be sure that the type you are considering can bear the maximum possible load，both when stopped and when in operation．The table below specifies the standard values for the static safety factor．

Table 1．3．1 Static Safety Factor f_{s}

Machine Used	Loading Conditions	f_{s} lower limit
Ordinary Industrial Machine	Receives no vibration or impact	$1.0-1.3$
	Receives vibration and impact	$2.0-3.0$
	Receives no vibration or impact	$1.0-1.5$
	Receives vibration and impact	$2.5-7.0$

For large radial loads	$\frac{f_{h} \cdot f_{t} \cdot f_{c} C_{o}}{P_{R}} \geqq f_{s}$
For large reverse－ radial loads	$\frac{f_{h} \cdot f_{t} \cdot f_{c} C_{o L}}{P_{L}} \geqq f_{s}$
For large lateral loads	$\frac{f_{h} \cdot f_{t} \cdot f_{c} C_{o T}}{P_{T}} \geqq f_{s}$

fs：Static safety factor
Co：Basic static－load rating（radial）（N）
Col：Basic static－load rating（reverse－radial）（N）
$\begin{array}{ll}\text { Col：Basic static－load rating（reverse－radial）} & \text {（N）} \\ \text { Cot：Basic static－load rating（lateral）} & \text {（N）}\end{array}$
PR：Calculated load（radial）
PL：Calculated load（reverse－radial）（N） PT ：Calculated load（lateral） Pr_{h} ：Calculated load（lateral）
f_{h} ：Hardness factor
ft ：Temperature facto
fc：Contact factor

1－3－4 Service Life（L）

Even when identical linear guideways in a group are manufactured in the same way or applied under the same condition，the service life may be varied．Thus，the service life is used as an indicator for determining the service life of a linear guideway system．The nominal life（L）is defined as the total running distance that 90% of identical linear guideways in a group，when they are applied under the same conditions，can work without developing laking．

1－3－5 Basic Dynamic Load Rating（C）
Basic dynamic load rating（C）can be used to calculate the service life when linear guideway system response to a load．The basic dynamic load rating（C）is defined as a load in a given direction and with a given magnitude that when a group of linear guideways operate under the same conditions．As the rolling element is ball，the nominal life of the linear guideway is 50 km ．Moreover，as the rolling element is roller， the nominal life is 100 km ．

1－3－6 Calculation of Nominal Life
The service lives of linear motion systems more or less vary from system to system even if they are manufactured to the same specifications and remain in service under the same operating conditions．Hence a guideline for determining the service life of a linear motion system is given based on nominal life，which is defined as follows．The nominal life refers to the total running distance that 90% of identical linear motion systems in a group，when interlocked with one another under the same conditions，can achieve without developing flaking．The nominal life（L）of a linear motion system can be obtained from the basic dynamic load rating (C) and load imposed (P) using the following equations．

For a linear motion system with balls

$$
L=\left(\frac{f_{h} \cdot f_{t} \cdot f_{c}}{f_{w}} \cdot \frac{C}{P_{c}}\right)^{3} \cdot 50
$$

$$
L=\left(\frac{f_{h} \cdot f_{t} \cdot f_{c}}{f_{w}} \cdot \frac{C}{P_{c}}\right)^{\frac{10}{3}} \cdot 100
$$

Service－Life Equation

The service life of the Linear Guide can be obtained using the following equation ：

$$
L=\left(\frac{f_{h} \cdot f_{t} \cdot f_{c}}{f_{w}} \cdot \frac{C}{P_{c}}\right)^{3} \cdot 50
$$

（total distance that can be traveled by at least 90% of a group of Linear Guide operated under the same conditions）

C ：basic dynamic－load rating
Pc：calculated load
fh_{h} ：hardness factor （Fig 1．3．2）
f_{t} ：temperature factor （Fig 1．3．3）
f_{c} ：contact factor
f_{w} ：load factor
（Once nominal life（ L ）is obtained using this equation．The Linear Guide service life can be calculated by using the following equation if the stroke length and the number of reciprocating cycles are constant

$$
\mathrm{Lh}=\frac{\mathrm{L} \cdot 10^{6}}{2 \cdot l_{s} \cdot \mathrm{~N}_{1} \cdot 60}
$$

L_{h} ：service life in hours（h）
$\ell \mathrm{s}$ ：stroke length（mm）
N_{1} ：No．of reciprocating cycles per $\min \left(\mathrm{min}^{-1}\right)$

【fh：Hardness factor】
To ensure achievement of the optimum load－ bearing capacity of the Linear Guide，the raceway hardness must be $58 \sim 64 \mathrm{HRC}$ ．At a hardness below this range，the basic dynamic and Static－load ratings decrease．The ratings must therefore be multiplied by the
respective hardness factors（ f h ）．As the Linear Guide has sufficient hardness， f for the Linear Guide is 1.0 unless otherwise specified．

【 ft_{t} ：Temperature factor】
For Linear Guide used at ambient temperatures over $100^{\circ} \mathrm{C}$ ，a temperature factor corresponding to the ambient temperature，selected from the diagram below，must be taken into consideration． In addition，please note that selected Linear Guide itself must be a model with high－ temperature specifications．

Raceway temperature
Fig 1．3．3 Temperature Factor $\left(\mathrm{f}_{\mathrm{t}}\right)$
※When used at ambient temperatures higher than $80^{\circ} \mathrm{C}$ ，the seals，end plates，and ball cages used must be change to those with high－temperature specifications．\ldots

【 f_{c} ：Contact factor】
When multiple Linear Guide blocks are used laid over one another，moments and mounting－ surface precision will affect operation，making it difficult to achieve uniform load distribution．

For Linear Guide blocks used laid over one another，multiply the basic load rating（C）， （Co）by a contact factor selected from the table below．

Table 1．3．2

No．of Blocks Used	Contact Factor（fc）
2	0.81
3	0.72
4	0.66
5	0.61
6 or more	0.6
In normal use	1

※When the non－uniform load distribution can be predicted，as in a large system，consider using a contact actor．※

【 f_{w} ：Load factor】
In general，machines in reciprocal motion are likely to cause vibration and impact during operation，and it is particularly difficult to determine the magnitude of vibration that develops during high－speed operation as well as that of impact during repeated starting and stopping in normal use．Therefore，where the effects of speed and vibration are estimated to be significant divide the basic dynamic－load rating（C）by a load factor selected from the table below．

Table 1．3．3 Load Factor（ f_{w} ）

Vibration and Impact	Velocity（V）	f_{w}
Very Slight	Very Low $\mathrm{V} \leq 0.25 \mathrm{~m} / \mathrm{s}$	$1 \sim 1.2$
Slight	Low $0.25<\mathrm{V} \leq 1 \mathrm{~m} / \mathrm{s}$	$1.2 \sim 1.5$
Moderate	Medium $1<\mathrm{V} \leq 2 \mathrm{~m} / \mathrm{s}$	$1.5 \sim 2$
Strong	High $\mathrm{V}>2 \mathrm{~m} / \mathrm{s}$	$2 \sim 3.5$

Calculation Examples

Application ：Machine Center
Block model number ：TRH30FE
（Basic static load Co $=88.329 \mathrm{kN}$ ，Basic dynamic load $\mathrm{C}=47 \mathrm{kN}$ ）
The calculated load Pc＝ 2614 N
The formula of calculating the life time by travel is

$$
L=\left(\frac{f_{h} \cdot f \cdot f_{c}}{f_{w}} \cdot \frac{C}{P_{c}}\right)^{3} \cdot 50 \mathrm{~km}
$$

Since using only 1 block in this application，we take $f_{c}=1$
Supposed the speed is not very high between $0.25 \sim 1 \mathrm{~m} / \mathrm{s}$ ，so we take $\mathrm{fw}=1.5$
The temperature of working environment is under $100^{\circ} \mathrm{C}$ ．The temperature factor $\mathrm{ft}=1$
The hardness of raceway is 58～64 HRC，so the hardness $\mathrm{fh}=1$

With all above data，the life time by travel of this application $L=86112 \mathrm{~km}$

To calculate the life time by using hours ：
We supposed the distance of travel $\mathrm{Ls}^{2}=3000 \mathrm{~mm}$
Times（Back and forth）per mins $\mathrm{N}_{1}=4\left(\mathrm{~min}^{-1}\right)$

The life time by travel is 86112 km ．the distance of travel is $3 \mathrm{~m}(3000 \mathrm{~mm})$ ，so each back and forth is 6 m
The total times of back and forth would be $86112 \times 1000 / 6=14352044$
The life time by using minutes is $14352044 / 4=3588011$ mins $=59800$ hours

1-3-7 Service-Life Equation Lh

The Service Life can be calculated by operating term and velocity Nominal Life.

$$
L_{h}=\left(\frac{L \cdot 10^{3}}{V_{e} \cdot 60}\right)=\frac{\left(\frac{C}{P}\right)^{3} \cdot 50 \cdot 10^{3}}{V_{e} \cdot 60} \cdot h r
$$

Lh: Service Life in Hour
L : Nominal life(km)
Ve: Velocity (m/min)
C/P : Load Ratio

Calculating Life Time

Formula (A) calculating hour
 Formula (B) calculating year

Ln : Lifetime (h)
L : Nominal life (km)
Ls : Distance of travel (mm)
N_{1} : Times of travel per minute (mifu)

Ly : Lifetime (year)
L : Nominal life (km)
Ls : Distance of travel (mm)
N_{1} : Times of travel per minute $\left(\mathrm{min}^{-1}\right)$
Mn : Minutes of running per day (hr/day)
H_{n} : Hours of running per day (hr/day)
Dn: Days of running per year (day/year)

Example 1 : There is a working station using linear guides with a nominal life of 45000 km , how should we calculate its service life in hours.

Known :
Ls : Distance of travel $=3000 \mathrm{~mm}(\mathrm{~mm})$
$\mathrm{N}_{1}: 4$ times of travel per minute $\left(\mathrm{min}^{-1}\right)$

$$
\mathrm{Ln}=\frac{\mathrm{L} \cdot 10^{6}}{2 \cdot \mathrm{Ls} \cdot \mathrm{~N} 1 \cdot 60}=\frac{45000 \cdot 10^{6}}{2 \cdot 3000 \cdot 4 \cdot 60}=31250 \mathrm{hr}
$$

Example 2 : There is a working station using linear guides with a nominal life 7123.5 km , how should we calculate its service life in hours.

Known :
Ls : Distance of travel $=4000 \mathrm{~mm}(\mathrm{~mm})$
$\mathrm{N}_{1}: 5$ times of travel per minute $\left(\mathrm{min}^{-1}\right)$
Ms : Running 60 mins per hour (min/hr)
Hs : Running 24 hours per day (hr/day)
Ds : Running 360 days per year (day/year)
$L_{y}=\frac{L_{: ~} 10^{6}}{2 \cdot L_{s} \cdot N_{1} \cdot M \cdot H \cdot D}=\frac{71231.5: 10^{6}}{2 \cdot 4000 \cdot 5 \cdot 60 \cdot 24 \cdot 360}=3.435$ year

1-4 Friction

The construction of Linear Guide are block, rail and motion system which has rolling elements, such as balls and rollers, placed between two raceways. The rolling motion that rolling elements give rise to reduce the frictional resistance to $1 / 20$ th to $1 / 40$ th of that in a slide guide. Static friction, in particular, is much lower in a linear motion system than in other system, and there is little difference between static and dynamic friction, so that stick-slip does not occur. Therefore, Linear Guide could apply in various precision motion system. Frictional resistance in a linear motion system varies with the type of linear motion system, the magnitude of the preload, the viscosity resistance of the lubricant used the load exerted on the system, and other factors. Table shows Friction of Linear Guide.

Formula of Friction :
$F=\mu x w+f$
F: Friction
W: Load
μ : Friction Coefficient
f : TR Frictional Resistance

Table 1.4.1 Friction Coefficient u of Various Linear Motion Systems μ

Type of Linear Motion System	Friction Coefficient
Linear Guide	$0.002 \sim 0.003$
Ball Spline	$0.002 \sim 0.003$
Linear Guide Roller	$0.0050 \sim 0.010$
Cross Roller Guide	$0.0010 \sim 0.0025$
Linear Ball Slide	$0.0006 \sim 0.0012$

1-5 Working Load

1-5-1 Working Load

The load applied to the Linear Guide, varies with the external force exerted thereon, such as the location of the center of gravity of an object been moved, the location of the thrust developed, inertia due to acceleration and deceleration during starting and stopping, and the machining resistance. To select the correct type of Linear Guide, the magnitude of applied loads must be determined in consideration of the above conditions to calculate accurate applied load.

To obtain the magnitude of an applied load and the service life in hours, the operating conditions of the Linear Guide system must first be set
(1) Mass : m (kg)
(2) Direction of the action load
(3) Location of the action point (e.g., center of gravity) : L2 L3 h1 (mm)
(4) Location of the thrust developed : L4 h2 (mm)
(5) Linear Guide system arrangement : Lo L1 (mm)
(6) Velocity diagram

Velocity: V (mm/s)
(7) Duty cycle (No: of reciprocating cycles per min) : $\mathrm{N}_{1}\left(\mathrm{~min}^{-1}\right)$
Time constant : tn (s)
(8) Stroke length : L (mm)

Acceleration : an $\left(\mathrm{mm} / \mathrm{s}^{2}\right)$
(9) Mean velocity: Vm (mm / s)
$a_{n}=\left(\frac{V}{t_{n}}\right)$
Gravitational acceleration $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Calculating the Working Load
The load applied to the Linear Guide varies with the external force exerted thereon，such as the location of the center of gravity of an object being moved，the location of the thrust developed，inertia due to acceleration and deceleration during starting and stopping，and the machining resistance．To select the correct type of Linear Guide，the magnitude of applied loads must be determined in consideration of the above conditions．Using the following Table 1．4．1，we will now calculate the loads applied to the Linear Guide．
m ：Mass
Ln：Distance
（kg）
（mm）
Fn：External force
（N）
Pn：Applied load
（N）
（radial and reverse－radial directions）
Pnt：Applied load
（mm）
$g:$ Gravitational acceleration
$\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
$\left(\mathrm{m} / \mathrm{s}^{2}\right)$

V ：Velocity
t_{n} ：Time constant
（ m / s ）
（s）
$\mathrm{a}_{\mathrm{n}}:$ Acceleration $\quad\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\mathrm{a}_{\mathrm{n}}=\left(\frac{\mathrm{V}}{\mathrm{t}_{\mathrm{n}}}\right)$
No．Opearating Conditions

No．	Opearating Conditions	Equation for Calculating Applied Load
7	Install in a longitudinally tilted position．	
8	Install in a horizontal position subjected to inertia．	During acceleration $\begin{aligned} & F_{1}=F_{4}=\frac{\mathrm{mg}}{4}-\frac{\mathrm{mg} \cdot \mathrm{a}_{1} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}} \\ & F_{2}=F_{3}=\frac{\mathrm{mg}}{4}+\frac{\mathrm{mg} \cdot \mathrm{a}_{1} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}} \\ & F_{1 \mathrm{~T}}=F_{2 \mathrm{~T}}=F_{3 \mathrm{~T}}=F_{4 \mathrm{~T}}=\frac{\mathrm{mg} \cdot \mathrm{a}_{1} \cdot \mathrm{~L}_{3}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}} \end{aligned}$ In uniform motion $F_{1}=F_{2}=F_{3}=F_{4}=\frac{\mathrm{mg}}{4}$ During deceleration $\begin{aligned} & F_{1}=F_{4}=\frac{\mathrm{mg}}{4}-\frac{\mathrm{mg} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}} \\ & F_{2}=F_{3}=\frac{\mathrm{mg}}{4}+\frac{\mathrm{mg} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}} \\ & F_{1 \mathrm{~T}}=F_{2 \mathrm{~T}}=F_{3 \mathrm{~T}}=F_{4 \mathrm{~T}}=\frac{\mathrm{mg} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{3}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}} \end{aligned}$

Mount in a vertical position subjected to nertia.

Install on a horizontal position subjected to external force.
(EX) Drill unit / Milling machine / Lathe/Machining center and similar cutting machine.

Equation for Calculating Applied Load
During acceleration

$$
\begin{aligned}
& F_{1}=F_{2}=F_{3}=F_{4}=\frac{\left(\mathrm{mg}+\mathrm{mg} \cdot \mathrm{a}_{1} / \mathrm{g}\right) \cdot \mathrm{L}_{2}}{2 \cdot \mathrm{~L}_{0}} \\
& F_{1 \mathrm{~T}}=F_{2 \mathrm{~T}}=F_{3 T}=F_{4 \mathrm{~T}}=\frac{\left(\mathrm{mg}+\mathrm{mg} \cdot \mathrm{a}_{1} / \mathrm{g}\right) \cdot \mathrm{L}_{3}}{2 \cdot \mathrm{~L}_{0}}
\end{aligned}
$$

In uniform motion

$$
\begin{aligned}
& F_{1}=F_{2}=F_{3}=F_{4}=\frac{\mathrm{mg} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}} \\
& F_{1 \mathrm{~T}}=F_{2 \mathrm{~T}}=F_{3 \mathrm{~T}}=F_{4 \mathrm{~T}}=\frac{\mathrm{mg} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}
\end{aligned}
$$

During deceleration

$$
\begin{aligned}
& F_{1}=F_{2}=F_{3}=F_{4}=\frac{\left(\mathrm{mg}-\mathrm{mg} \cdot \mathrm{a}_{3} / \mathrm{g}\right) \cdot \mathrm{L}_{2}}{2 \cdot \mathrm{~L}_{0}} \\
& F_{1 \mathrm{~T}}=F_{2 \mathrm{~T}}=F_{3 \mathrm{~T}}=F_{4 \mathrm{~T}}=\frac{\left(\mathrm{mg}-\mathrm{mg} \cdot \mathrm{a}_{3} / \mathrm{g}\right) \cdot \mathrm{L}_{3}}{2 \cdot \mathrm{~L}_{0}}
\end{aligned}
$$

Under force Q1

$$
\begin{aligned}
& \mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}_{3}=\mathrm{F}_{4}=\frac{\mathrm{Q}_{1} \cdot \mathrm{~L}_{5}}{2 \cdot \mathrm{~L}_{0}} \\
& \mathrm{~F}_{1 \mathrm{~T}}=\mathrm{F}_{2 \mathrm{~T}}=\mathrm{F}_{3 \mathrm{~T}}=\mathrm{F}_{4 \mathrm{~T}}=\frac{\mathrm{Q}_{1} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~L}_{0}}
\end{aligned}
$$

Under force Q2

$$
\begin{aligned}
& \mathrm{F}_{1}=\mathrm{F}_{4}=\frac{\mathrm{Q}_{2}}{4}+\frac{\mathrm{Q}_{2} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}} \\
& \mathrm{~F}_{2}=\mathrm{F}_{3}=\frac{\mathrm{Q}_{2}}{4}-\frac{\mathrm{Q}_{2} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}
\end{aligned}
$$

Under force Q3

$$
\begin{aligned}
& F_{1}=F_{2}=F_{3}=F_{4}=\frac{Q_{3} \cdot L_{3}}{2 \cdot L_{1}} \\
& F_{1 T}=F_{4 T}=\frac{Q_{3}}{4}+\frac{Q_{3} \cdot L_{2}}{2 \cdot L_{0}} \\
& F_{2 T}=F_{3 T}=\frac{Q_{3}}{4}-\frac{Q_{3} \cdot L_{2}}{2 \cdot L_{0}}
\end{aligned}
$$

1-6 Safety Factor and Load

1-6-1 Equivalent Factors of Linear Guide Block

Where a sufficient installation space is not available you may be obliged to use just one Linear Guide block or two Linear Guide blocks laid over one another for the Linear Guide. In such a setting, the load distribution cannot be uniform and, as a result, an excessive load is exerted in localized areas (e.g., rail ends). Continued use under such conditions may result in flaking in those areas, consequently shortening the service life. In such a case, calculate true load by multiplying the moment value by any one of the moment-equivalent factors specified in Tables.

Fig 1.6.1 Ball Load Effected by a Moment

An equivalent-load equation applicable when a moment acts on a Linear Guides is shown below.
$P=K . M$
P: Equivalent load per Linear Guide (kgf)
K : Equivalent moment factor $\left(\mathrm{mm}^{-1}\right)$
M : Developed moment (kgf $\cdot \mathrm{mm}$)
$K A, K_{B}, K_{c}$ represent the equivalent moment factors in directions $\mathrm{MA}_{A}, \mathrm{M}_{\mathrm{B}}$ \& Mc respectively.

Two Linear Guide blocks are used laid over one another.
Model No : TRH30FE
Gravitational Acceleration $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}$
Mass w = 5 kgf
Mc = 5 $\cdot 150=750(\mathrm{kgf}-\mathrm{mm})$
$M_{A}=5 \cdot 200=1000(k g f-m m)$

Fig 1.6.2
$P_{1}=K_{c} \cdot \frac{M_{c}}{2}+K_{A} \cdot M_{A}+\frac{W}{2}=7.15 \cdot 10^{-2} \cdot \frac{750}{2}+1.3 \cdot 10^{-2} \cdot 1000+\frac{5}{2}=42.3(\mathrm{kgf})$
$P_{2}=-K_{c} \cdot \frac{M_{c}}{2}+K_{A} \cdot M_{A}+\frac{W}{2}=-7.15 \cdot 10^{-2} \cdot \frac{750}{2}+1.3 \cdot 10^{-2} \cdot 1000+\frac{5}{2}=-11.3(\mathrm{kgf})$
$P_{3}=K_{c} \cdot \frac{M_{c}}{2}-K_{A} \cdot M_{A}+\frac{W}{2}=7.15 \cdot 10^{-2} \cdot \frac{750}{2}-1.3 \cdot 10^{-2} \cdot 1000+\frac{5}{2}=16.3(\mathrm{kgf})$
$P_{4}=-K_{c} \cdot \frac{M_{c}}{2}-K_{A} \cdot M_{A}+\frac{W}{2}=-7.15 \cdot 10^{-2} \cdot \frac{750}{2}-1.3 \cdot 10^{-2} \cdot 1000+\frac{5}{2}=-37.3(\mathrm{kgf})$
※Note. 1
Since a Linear Guide in a vertical position receives only a moment load, there is no need to apply other loads (w).
※Note. 2
In some models, load ratings differ depending on the direction of the applied load. With such a model, calculate an equivalent load in a direction in which conditions are comparably bad.

Table 1.6.1 TRH-V

Model No.	Equivalent Factors $\mathrm{Ka}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors $\mathrm{Kb}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors $\mathrm{Kc}_{\mathrm{c}}\left(\mathrm{mm}^{-1}\right)$
	Equivalent Load Calculation for a system Using One Linear Guide Block		Equivalent Load Calculation for a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Another	
TRH15VN	1.48×10^{-1}	3.11×10^{-2}	1.48×10^{-1}	3.11×10^{-2}	1.34×10^{-1}
TRH15VL	1.26×10^{-1}	2.70×10^{-2}	1.26×10^{-1}	2.70×10^{-2}	1.34×10^{-1}
TRH20VN	1.11×10^{-1}	2.35×10^{-2}	1.11×10^{-1}	2.35×10^{-2}	9.90×10^{-2}
TRH20VL	1.05×10^{-1}	2.20×10^{-2}	1.05×10^{-1}	2.20×10^{-2}	9.90×10^{-2}
TRH20VE	8.00×10^{-2}	1.78×10^{-2}	8.00×10^{-2}	1.78×10^{-2}	9.90×10^{-2}
TRH25VN	1.04×10^{-1}	2.17×10^{-2}	1.04×10^{-1}	2.17×10^{-2}	8.62×10^{-2}
TRH25VL	8.82×10^{-2}	1.89×10^{-2}	8.82×10^{-2}	1.89×10^{-2}	8.62×10^{-2}
TRH25VE	7.35×10^{-2}	1.60×10^{-2}	7.35×10^{-2}	1.60×10^{-2}	8.62×10^{-2}
TRH30VN	6.52×10^{-2}	1.34×10^{-2}	6.52×10^{-2}	1.34×10^{-2}	7.69×10^{-2}
TRH30VL	7.74×10^{-2}	1.64×10^{-2}	7.74×10^{-2}	1.64×10^{-2}	7.15×10^{-2}
TRH30VE	6.12×10^{-2}	1.33×10^{-2}	6.12×10^{-2}	1.33×10^{-2}	7.15×10^{-2}
TRH35VN	6.95×10^{-2}	1.43×10^{-2}	6.95×10^{-2}	1.43×10^{-2}	6.29×10^{-2}
TRH35VL	6.99×10^{-2}	1.42×10^{-2}	6.99×10^{-2}	1.42×10^{-2}	5.85×10^{-2}
TRH35VE	5.25×10^{-2}	1.15×10^{-2}	5.25×10^{-2}	1.15×10^{-2}	5.85×10^{-2}
TRH45VL	5.80×10^{-2}	1.24×10^{-2}	5.80×10^{-2}	1.24×10^{-2}	4.38×10^{-2}
TRH45VE	4.59×10^{-2}	1.00×10^{-2}	4.59×10^{-2}	1.00×10^{-2}	4.38×10^{-2}
TRH55VL	5.25×10^{-2}	1.07×10^{-2}	5.25×10^{-2}	1.07×10^{-2}	3.78×10^{-2}
TRH55VE	4.08×10^{-2}	8.69×10^{-3}	4.08×10^{-2}	8.69×10^{-3}	3.78×10^{-2}
TRH65VL	4.52×10^{-2}	8.76×10^{-3}	4.52×10^{-2}	8.76×10^{-3}	3.24×10^{-2}
TRH65VE	3.27×10^{-2}	6.77×10^{-3}	3.27×10^{-2}	6.77×10^{-3}	3.24×10^{-2}

Ka : Equivalent moment factor in the pitching direction
Kb : Equivalent moment factor in the yawing direction
Kb : Equivalent moment factor in the yawing direction

TBIMOTION

Table 1.6.2 TRH-F

ヨaIn૭ y $\forall \exists \mathrm{N}$ า

Model No.	Equivalent Factors $\mathrm{Ka}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors $\mathrm{Kb}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors Kc $\left(\mathrm{mm}^{-1}\right)$
	Equivalent Load Calculation for a system Using One Linear Guide Block		Equivalent Load Calculation for a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Anothe	
TRH15FN	1.48×10^{-1}	3.11×10^{-2}	1.48×10^{-1}	3.11×10^{-2}	1.34×10^{-1}
TRH15FL	1.26×10^{-1}	2.70×10^{-2}	1.26×10^{-1}	2.70×10^{-2}	1.34×10^{-1}
TRH20FN	1.11×10^{-1}	2.35×10^{-2}	1.11×10^{-1}	2.35×10^{-2}	9.90×10^{-2}
TRH20FL	1.05×10^{-1}	2.20×10^{-2}	1.05×10^{-1}	2.20×10^{-2}	9.90×10^{-2}
TRH20FE	8.00×10^{-2}	1.78×10^{-2}	8.00×10^{-2}	1.78×10^{-2}	9.90×10^{-2}
TRH25FN	1.04×10^{-1}	2.17×10^{-2}	1.04×10^{-1}	2.17×10^{-2}	8.62×10^{-2}
TRH25FL	8.82×10^{-2}	1.89×10^{-2}	8.82×10^{-2}	1.89×10^{-2}	8.62×10^{-2}
TRH25FE	7.35×10^{-2}	1.60×10^{-2}	7.35×10^{-2}	1.60×10^{-2}	8.62×10^{-2}
TRH30FN	6.52×10^{-2}	1.34×10^{-2}	6.52×10^{-2}	1.34×10^{-2}	7.69×10^{-2}
TRH30FL	7.74×10^{-2}	1.64×10^{-2}	7.74×10^{-2}	1.64×10^{-2}	7.15×10^{-2}
TRH30FE	6.12×10^{-2}	1.33×10^{-2}	6.12×10^{-2}	1.33×10^{-2}	7.15×10^{-2}
TRH35FN	6.95×10^{-2}	1.43×10^{-2}	6.95×10^{-2}	1.43×10^{-2}	6.29×10^{-2}
TRH35FL	6.99×10^{-2}	1.42×10^{-2}	6.99×10^{-2}	1.42×10^{-2}	5.85×10^{-2}
TRH35FE	5.25×10^{-2}	1.15×10^{-2}	5.25×10^{-2}	1.15×10^{-2}	5.85×10^{-2}
TRH45FL	5.80×10^{-2}	1.24×10^{-2}	5.80×10^{-2}	1.24×10^{-2}	4.38×10^{-2}
TRH45FE	4.59×10^{-2}	1.00×10^{-2}	4.59×10^{-2}	1.00×10^{-2}	4.38×10^{-2}
TRH55FL	5.25×10^{-2}	1.07×10^{-2}	5.25×10^{-2}	1.07×10^{-2}	3.78×10^{-2}
TRH55FE	4.08×10^{-2}	8.69×10^{-3}	4.08×10^{-2}	8.69×10^{-3}	3.78×10^{-2}
TRH65FL	4.52×10^{-2}	8.76×10^{-3}	4.52×10^{-2}	8.76×10^{-3}	3.24×10^{-2}
TRH65FE	3.27×10^{-2}	6.77×10^{-3}	3.27×10^{-2}	6.77×10^{-3}	3.24×10^{-2}

Ka : Equivalent moment factor in the pitching direction
Kb : Equivalent moment factor in the yawing direction
K_{c} : Equivalent moment factor in the rolling direction.

Table 1.6.3 TRS-V

Model No.	Equivalent Factors $\mathrm{Ka}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors $\mathrm{Kb}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors $\mathrm{Kc}_{\mathrm{c}}\left(\mathrm{mm}^{-1}\right)$
	Equivalent Load Calculation for a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Another	Equivalent Load Calculation for a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Another	
TRS15VS	2.29×10^{-1}	4.39×10^{-2}	2.29×10^{-1}	4.39×10^{-2}	1.34×10^{-1}
TRS15VN	1.48×10^{-1}	3.11×10^{-2}	1.48×10^{-1}	3.11×10^{-2}	1.34×10^{-1}
TRS20VS	2.00×10^{-1}	3.58×10^{-2}	2.00×10^{-1}	3.58×10^{-2}	9.90×10^{-2}
TRS20VN	1.25×10^{-1}	2.60×10^{-2}	1.25×10^{-1}	2.60×10^{-2}	9.90×10^{-2}
TRS25VS	1.60×10^{-1}	3.07×10^{-2}	1.60×10^{-1}	3.07×10^{-2}	8.62×10^{-2}
TRS25VN	1.04×10^{-1}	2.17×10^{-2}	1.04×10^{-1}	2.17×10^{-2}	8.62×10^{-2}
TRS30VS	1.47×10^{-1}	2.57×10^{-2}	1.47×10^{-1}	2.57×10^{-2}	7.15×10^{-2}
TRS30VN	8.65×10^{-2}	1.82×10^{-2}	8.65×10^{-2}	1.82×10^{-2}	7.15×10^{-2}
TRS30VL	7.74×10^{-2}	1.64×10^{-2}	7.74×10^{-2}	1.64×10^{-2}	7.15×10^{-2}
TRS35VS	1.26×10^{-1}	2.30×10^{-2}	1.26×10^{-1}	2.30×10^{-2}	5.85×10^{-2}
TRS35VN	7.87×10^{-2}	1.61×10^{-2}	7.87×10^{-2}	1.61×10^{-2}	5.85×10^{-2}
TRS35VE	5.25×10^{-2}	1.15×10^{-2}	5.25×10^{-2}	1.15×10^{-2}	5.85×10^{-2}
TRS45VN	6.89×10^{-2}	1.39×10^{-2}	6.89×10^{-2}	1.39×10^{-2}	4.38×10^{-2}

Ka : Equivalent moment factor in the pitching direction.
Kb : Equivalent moment factor in the yawing direction.
K_{c} : Equivalent moment factor in the rolling direction. TBI TBIMOTION

Table 1.6.4 TRS-F

Model No.	Equivalent Factors $\mathrm{Ka}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors $\mathrm{Kb}\left(\mathrm{mm}^{-1}\right)$		
	Equivalent Load Calculation for a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Another	Equivalent Load Calculation for a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Another	Equivalent Factors $\mathrm{Kc}_{\mathrm{c}}\left(\mathrm{mm}^{-1}\right)$
TRS15FS	2.29×10^{-1}	4.39×10^{-2}	2.29×10^{-1}	4.39×10^{-2}	1.34×10^{-1}
TRS15FN	1.48×10^{-1}	3.11×10^{-2}	1.48×10^{-1}	3.11×10^{-2}	1.34×10^{-1}
TRS20FS	2.00×10^{-1}	3.58×10^{-2}	2.00×10^{-1}	3.58×10^{-2}	9.90×10^{-2}
TRS20FN	1.25×10^{-1}	2.60×10^{-2}	1.25×10^{-1}	2.60×10^{-2}	9.90×10^{-2}
TRS25FN	1.04×10^{-1}	2.17×10^{-2}	1.04×10^{-1}	2.17×10^{-2}	8.62×10^{-2}

Ka : Equivalent moment factor in the pitching direction
Kb : Equivalent moment factor in the yawing direction.
K_{c} : Equivalent moment factor in the rolling direction.

Table 1.6.5 TRC-V

Model No.	Equivalent Factors $\mathrm{Ka}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors $\mathrm{Kb}\left(\mathrm{mm}^{-1}\right)$		Equivalent ctors $\mathrm{Kc}\left(\mathrm{mm}^{-1}\right)$
	Equivalent Load Calculationfor a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Another	Equivalent Load Calculation for a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Another	
TRC25VL	8.82×10^{-2}	1.89×10^{-2}	8.82×10^{-2}	1.89×10^{-2}	8.62×10^{-2}
TRC25VE	7.35×10^{-2}	1.60×10^{-2}	7.35×10^{-2}	1.60×10^{-2}	8.62×10^{-2}

Ka : Equivalent moment factor in the pitching direction.
K_{b} : Equivalent moment factor in the yawing direction.
K_{c} : Equivalent moment factor in the rolling direction.

Table 1.6.6 TM-N

Model No.	Equivalent Factors $\mathrm{Ka}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors $\mathrm{Kb}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors $\mathrm{Kc}_{\mathrm{c}}\left(\mathrm{mm}^{-1}\right)$
	Equivalent Load Calculationfor a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Another	Equivalent Load Calculation for a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Another	
TM07NN	8.88×10^{-1}	6.31×10^{-2}	8.88×10^{-1}	6.31×10^{-2}	2.74×10^{-1}
TM07NL	4.41×10^{-1}	5.16×10^{-2}	4.41×10^{-1}	5.16×10^{-2}	2.74×10^{-1}
TM09NN	4.41×10^{-1}	5.26×10^{-2}	4.41×10^{-1}	5.26×10^{-2}	2.19×10^{-1}
TM09NL	2.76×10^{-1}	4.08×10^{-2}	2.76×10^{-1}	4.08×10^{-2}	2.19×10^{-1}
TM12NN	4.90×10^{-1}	4.32×10^{-2}	4.90×10^{-1}	4.32×10^{-2}	1.64×10^{-1}
TM12NL	2.67×10^{-1}	3.42×10^{-2}	2.67×10^{-1}	3.42×10^{-2}	1.64×10^{-1}
TM15NN	3.60×10^{-1}	3.61×10^{-2}	3.60×10^{-1}	3.61×10^{-2}	1.32×10^{-1}
TM15NL	1.94×10^{-1}	2.76×10^{-2}	1.94×10^{-1}	2.76×10^{-2}	1.32×10^{-1}

Ka : Equivalent moment factor in the pitching direction.
Kb : Equivalent moment factor in the yawing direction.
K_{c} : Equivalent moment factor in the rolling direction

Table 1.6.7 TM-W

Model No.	Equivalent Factors $\mathrm{Ka}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors $\mathrm{Kb}\left(\mathrm{mm}^{-1}\right)$		Equivalent Factors Kc $\left(\mathrm{mm}^{-1}\right)$
	Equivalent Load Calculationfor a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Another	Equivalent Load Calculation for a system Using One Linear Guide Block	Equivalent Load Calculation for a system Using Two Linear Guide Blocks laid Over One-Another	
TM09WN	2.27×10^{-1}	3.01×10^{-2}	2.27×10^{-1}	3.01×10^{-2}	7.92×10^{-2}
TM09WL	1.30×10^{-1}	2.17×10^{-2}	1.30×10^{-1}	2.17×10^{-2}	7.14×10^{-2}
TM12WN	1.85×10^{-1}	2.28×10^{-2}	1.85×10^{-1}	2.28×10^{-2}	5.20×10^{-2}
TM12WL	1.12×10^{-1}	1.72×10^{-2}	1.12×10^{-1}	1.72×10^{-2}	5.05×10^{-2}
TM15WN	1.56×10^{-1}	2.01×10^{-2}	1.56×10^{-1}	2.01×10^{-2}	3.24×10^{-2}
TM15WL	9.07×10^{-2}	1.47×10^{-2}	9.07×10^{-2}	1.47×10^{-2}	3.07×10^{-2}

Ka : Equivalent moment factor in the pitching direction
Kb : Equivalent moment factor in the yawing direction.
K_{c} : Equivalent moment factor in the rolling direction.

TBIMOTION

1-6-2 Calculating the Equivalent Load

The Linear Guide can bear loads and moments in four directions, including a radial load (PR) reverse-radial load (PL), and lateral load (PT), simultaneously.

PR : Radial load
PL: Reverse-radial load
Pt : Lateral load
MA : Moment in the pitching direction
MB : Moment in the yawing direction
Mc : Moment in the rolling direction

\qquad

Fig 1.6.3 Directions of the Load and Moment

 Exerted on the Linear GuideWhen more than one load (e.g., radial and lateral loads) is exerted on the Linear Guide simultaneously, the service life and static safety factors should be calculated using equivalent load values obtained by converting all loads involved into radial, lateral, and other loads involved.

Equivalent-load equation
The equivalent-load equations for the Linear Guide differ by guide type. For details, see the relevant sections.

Fig 1.6.5 Linear Guide Equivalent Load

The equivalent load when a radial load (P_{R}) and a lateral load (PT) are applied simultaneously can be obtained using the following equation.
$P_{E}:($ equivalent load $)=X \cdot P_{R(L)}+Y \cdot P_{T}$
P_{R} : Radial load P_{t} : Lateral load $X \cdot Y=1$

1-7 Calculation of Average Working Load

1-7-1 Calculating the Mean Load
An industrial robot grasps a workpiece using its arm as it advances, moving further under the load. When it returns, the arm has no load other than its tare. In a machine tool, Linear Guide blocks receive varying loads depending on the host-system operating conditions.

The service life of the Linear Guides; therefore, $\quad P_{m}=\sqrt[3]{\frac{1}{L} \cdot \Sigma\left(P_{n}^{3} \cdot L_{n}\right)}$
should be calculated in consideration of such
fluctuations in load.

The mean load (Pm) is the load under which the service life of the Linear Guide becomes equivalent to that under the varying loads exerted on the Linear Guide blocks

$$
\begin{equation*}
P_{m}=\sqrt[3]{\frac{1}{L}\left(P_{1}^{3} \cdot L_{1}+P_{2}^{3} \cdot L_{2} \cdot \ldots+P_{n}^{3} \cdot L_{n}\right) .} \tag{1}
\end{equation*}
$$

\qquad
(1) For Loads that Change Stepwise

Pm : Mean load
Pn : Varying load
Lc : Total running distance (mm)
Ln: Running distance under load Pn (mm) ※This equation and equation (1) below apply in cases in which therolling elements are balls..

Pm : Mean load
Pn : Varying load (N)
Lc : Total running distance (mm)
Ln : Running distance under load Pn (mm)
（2）For Loads that Change Monotonous
$\mathrm{P}_{\mathrm{m}} \fallingdotseq \frac{1}{3}\left(\mathrm{P}_{\text {min }}+2 \cdot \mathrm{P}_{\text {max }}\right)$ \qquad
P min ：minimum load
P max ：maximum load

（N） | 2 |
| :---: |
| 0 |
| 0 |
| 0 |

Total running distance（L）

Fig 1．7．2

（3）For Loads that Change Sinusoida

$$
\begin{equation*}
\mathrm{P}_{\mathrm{m}} \fallingdotseq 0.65 \mathrm{P}_{\text {max }} \tag{3}
\end{equation*}
$$

\qquad

Fig 1．7．3

Total running distance（L）
Fig 1．7．4

1－7－2 Mean Load Calculation Example（ I ）
（1）Horizontal Installations Subjected to Acceleration and Deceleration

Fig 1．7．5

（2）Load Applied to the Linear Guide Block

1．In uniform motion
2．During acceleration
3．During deceleration

$$
\begin{array}{ll}
P_{1}=+\frac{m g}{4} & P_{a_{1}}=P_{1}+\frac{m \cdot \alpha_{1} \cdot L_{2}}{2 \cdot L_{0}} \\
P_{2}=+\frac{m g}{4} & P_{a_{2}}=P_{2}+\frac{m \cdot \alpha_{1} \cdot L_{2}}{2 \cdot L_{0}} \\
P_{3}=+\frac{m g}{4} & P_{a_{3}}=P_{3}+\frac{m \cdot \alpha_{1} \cdot L_{2}}{2 \cdot L_{0}} \\
P_{4}=+\frac{m g}{4} & P_{a_{4}}=P_{4}+\frac{m \cdot \alpha_{1} \cdot L_{2}}{2 \cdot L_{0}}
\end{array}
$$

$$
\mathrm{P}_{\mathrm{d}_{1}}=\mathrm{P}_{1}-\frac{\mathrm{m} \cdot \alpha_{1} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}
$$

（3）Mean Load

$$
\begin{aligned}
& P_{m_{1}}=\sqrt[3]{\frac{1}{L_{s}}\left(P P_{1} \cdot{ }^{3} \cdot S_{1}+P_{1}^{3} \cdot S_{2}+P_{d} \cdot S_{3}\right)} \quad P m_{3}=\sqrt[3]{\frac{1}{L_{s}}\left(P a_{3}^{3} \cdot S_{1}+P_{3}^{3} \cdot S_{2}+P_{d_{3}}^{3} \cdot S_{3}\right)} \\
& P_{m_{2}}=\sqrt[3]{\frac{1}{L_{s}}\left(P_{a_{2}} \cdot S_{1}+P_{2}^{3} \cdot S_{2}+P_{d_{2}}^{3} \cdot S_{3}\right)} \quad P_{m_{4}}=\sqrt[3]{\frac{1}{L_{s}}\left(P_{a_{4}}^{3} \cdot S_{1}+P_{4}^{3} \cdot S_{2}+P_{d_{4}}^{3} \cdot S_{3}\right)}
\end{aligned}
$$

※Pan1．Pdn represent loads exerted on the Linear Guide block．The suffix＂n＂ indicates the block number in the diagram above．.

Mean Load Calculation Example (II)
(1) Operating conditions-Installations on Rails.

N0. 1
NO. 2
Fig 1.7.8

Fig 1.7.9
(2) Load applied to the Linear Guide block
(3) Mean load

1. At the left of the arm
$P_{\mathrm{L} 1}=+\frac{\mathrm{mg}}{4}+\frac{\mathrm{mg} \cdot \mathrm{L}_{1}}{2 \cdot \mathrm{~L}_{0}}$
2. At the right of the arm
$P_{L 2}=+\frac{m g}{4}-\frac{m g \cdot L_{1}}{2 \cdot L_{0}}$

$$
P_{r_{1}}=+\frac{m g}{4}-\frac{m g \cdot L_{1}}{2 \cdot L_{0}}
$$

$$
P_{m_{1}}=\frac{1}{3}\left(2 \cdot\left|P_{\mathrm{L}_{1}}\right|+\left|P_{r_{1}}\right|\right)
$$

$$
\mathrm{P}_{\mathrm{r} 2}=+\frac{\mathrm{mg}}{4}+\frac{\mathrm{mg} \cdot \mathrm{~L}_{1}}{2 \cdot \mathrm{~L}_{0}}
$$

$$
P_{m_{1}}=\frac{1}{3}\left(2 \cdot\left|P_{L_{2}}\right|+\left|P_{r_{2}}\right|\right)
$$

$$
P_{L 3}=+\frac{\mathrm{mg}}{4}-\frac{\mathrm{mg} \cdot \mathrm{~L}_{1}}{2 \cdot \mathrm{~L}_{0}}
$$

$$
P_{r 3}=+\frac{m g}{4}+\frac{\mathrm{mg} \cdot \mathrm{~L}_{1}}{2 \cdot \mathrm{~L}_{0}}
$$

$$
P_{m_{1}}=\frac{1}{3}\left(2 \cdot\left|P_{L_{3}}\right|+\left|P_{r_{3}}\right|\right)
$$

$$
P_{\mathrm{L} 4}=+\frac{\mathrm{mg}}{4}+\frac{\mathrm{mg} \cdot \mathrm{~L}_{1}}{2 \cdot \mathrm{~L}_{0}}
$$

$$
P_{r 4}=+\frac{\mathrm{mg}}{4}-\frac{\mathrm{mg} \cdot \mathrm{~L}_{1}}{2 \cdot \mathrm{~L}_{0}}
$$

$$
P_{m_{1}}=\frac{1}{3}\left(2 \cdot\left|P_{\llcorner 4}\right|+\left|P_{r 4}\right|\right)
$$

1-8 Calculation Example

1-8-1 Calculation Examples (1)

(1) Operating conditions-Horizontal installations subjected to high acceleration and deceleration

Model number: TRH30FE
Basic dynamic-load rating $\mathrm{C}=47 \mathrm{kN}$
Basic static-load rating $\mathrm{C}_{0}=88.329 \mathrm{kN}$
Gravitational acceleration : $\mathrm{g}=9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
Load : $\mathrm{m}_{1}=6000 \mathrm{~N}$
Load : $\mathrm{m}_{2}=3800 \mathrm{~N}$
Velocity: $\mathrm{V}=0.5 \mathrm{~m} / \mathrm{s}$
Time : $\mathrm{t}_{1}=0.05 \mathrm{~s}$
Time : $\mathrm{t}_{2}=2.8 \mathrm{~s}$
Time : $\mathrm{t}_{3}=0.15 \mathrm{~s}$

Acceleration : $\boldsymbol{a}_{1}=10 \mathrm{~m} / \mathrm{s}^{2}$
Acceleration : $\mathrm{a}_{2}=3.333 \mathrm{~m} / \mathrm{s}^{2}$
Stroke : Ls = 1450 mm
Distance : Lo $=600 \mathrm{~mm}$

$$
\mathrm{L}_{1}=400 \mathrm{~mm}
$$

$\mathrm{L}_{2}=100 \mathrm{~mm}$
$\mathrm{L}_{3}=50 \mathrm{~mm}$
$\mathrm{L} 4=200 \mathrm{~mm}$
$\mathrm{L} 5=400 \mathrm{~mm}$

Fig 1.8.1

Fig 1.8.2

Fig 1.8.3
the block number in the diagram above. $※$
（2）Load Exerted on the Linear Guide by the Linear Guide Block

Calculate the load that each Linear Guide block exerts．

1．In uniform motion Load applied in radial direction Pn．（Base on the first condition of Load exerted【please see page15，No．1】，that＇s regarding influence of $\mathrm{m}_{1} \mathrm{~g}$ and $\mathrm{m}_{2} \mathrm{~g}$ ．

$$
\begin{array}{ll}
P_{A}=\frac{m_{1} g}{4}-\frac{m_{1} g \cdot L_{2}}{2 \cdot L_{0}}+\frac{m_{1} g \cdot L_{3}}{2 \cdot L_{1}}+\frac{m_{2} g}{4}=2325 N & P_{C}=\frac{m_{1} g}{4}+\frac{m_{1} g \cdot L_{2}}{2 \cdot L_{0}}-\frac{m_{1} g \cdot L_{3}}{2 \cdot L_{1}}+\frac{m_{2} g}{4}=2575 \mathrm{~N} \\
P_{B}=\frac{m_{1} g}{4}+\frac{m_{1} g \cdot L_{2}}{2 \cdot L_{0}}+\frac{m_{1} g \cdot L_{3}}{2 \cdot L_{1}}+\frac{m_{2} g}{4}=3325 N & P_{D}=\frac{m_{1} g}{4}-\frac{m_{1} g \cdot L_{2}}{2 \cdot L_{0}}-\frac{m_{1} g \cdot L_{3}}{2 \cdot L_{1}}+\frac{m_{2} g}{4}=1575 \mathrm{~N}
\end{array}
$$

2．During acceleration to the left Load applied in radial direction PnLa and lateral direction PntLa（Base on the 8th condition of load exerted【 please see page A18．No．8】．The load should allocate on the central of table，and $\frac{m_{1} g}{4}$ should be re－placed 【please see page A15．No．1】by Pn）．
$\begin{array}{ll}P_{A} L_{a}=P_{A}-\frac{m_{1} g \cdot a_{1} \cdot L_{5}}{2 \cdot L_{0} \cdot g}-\frac{m_{2} g \cdot a_{1} \cdot L_{4}}{2 \cdot L_{0} \cdot g}=-362 \mathrm{~N} & P_{c} L_{a}=P_{c}-\frac{m_{1} g \cdot a_{1} \cdot L_{5}}{2 \cdot L_{0} \cdot g}-\frac{m_{2} g \cdot a_{1} \cdot L_{4}}{2 \cdot L_{0} \cdot g}=5262.1 \mathrm{~N} \\ P_{B} L_{a}=P_{B}-\frac{m_{1} g \cdot a_{1} \cdot L_{5}}{2 \cdot L_{0} \cdot g}-\frac{m_{2} g \cdot a_{1} \cdot L_{4}}{2 \cdot L_{0} \cdot g}=6012.1 \mathrm{~N} & P_{D_{0} L_{a}=P_{D}-\frac{m_{1} g \cdot a \cdot L_{5}}{2 \cdot L_{0} \cdot g}-\frac{\mathrm{m}_{2} g \cdot a_{1} \cdot L_{4}}{2 \cdot L_{0} \cdot g}=1112.1 \mathrm{~N}}\end{array}$

$$
\begin{array}{ll}
P_{A t} L_{a}=-\frac{m_{1} g \cdot a_{1} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=-255.1 \mathrm{~N} & P_{c_{t} L_{a}}=-\frac{m_{1} g \cdot a_{1} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=255.1 \mathrm{~N} \\
P_{B t} L_{a}=-\frac{m_{1} g \cdot a_{1} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=255.1 \mathrm{~N} & P_{D_{t} L_{a}}=-\frac{m_{1} g \cdot a_{1} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=-255.1 \mathrm{~N}
\end{array}
$$

3．During deceleration to the left Load applied in radial direction PnLd

$P_{A L_{d}}=P_{A}+\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{5}}{2 \cdot \mathrm{~d}_{0} \cdot \mathrm{~g}}+\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~L}_{0} \cdot g}=3220.6 \mathrm{~N} \quad \mathrm{P}_{\mathrm{c}} \mathrm{L}_{d}=\mathrm{P}_{\mathrm{c}}-\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{5}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}}-\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}}=1679.4 \mathrm{~N}$ $P_{B} L_{d}=P_{B}-\frac{\mathrm{m}_{1} g \cdot a_{3} \cdot L_{5}}{2 \cdot L_{0} \cdot g}-\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~L}_{0} \cdot g}=2429.4 \mathrm{~N} \quad P_{\mathrm{D}} \mathrm{L}_{\mathrm{d}}=\mathrm{P}_{\mathrm{D}}+\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{5}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}}+\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}}=2470.6 \mathrm{~N}$

Load applied in lateral direction PntLd

$$
\begin{aligned}
& P_{A t} L_{d}=\frac{m_{1} g \cdot a_{3} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=85 \mathrm{~N} \\
& P_{B t} L_{d}=-\frac{m_{1} g \cdot a_{3} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=-85 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& P_{c t L_{d}}=-\frac{m_{1} g \cdot a_{3} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=-85 \mathrm{~N} \\
& P_{\mathrm{ot}} \mathrm{~L}_{\mathrm{d}}=\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{3}}{2 \cdot \mathrm{~L}_{0} \cdot g}=85 \mathrm{~N}
\end{aligned}
$$

4．During acceleration to the right Load applied in radial direction PnRa

$$
\begin{array}{ll}
P_{A} R_{a}=P_{A}+\frac{m_{1} g \cdot a_{1} \cdot L_{5}}{2 \cdot L_{0} \cdot g}+\frac{m_{2} g \cdot a_{1} \cdot L_{4}}{2 \cdot L_{0} \cdot g}=4982.1 \mathrm{~N} & P_{c} R_{a}=P_{c}-\frac{m_{1} g \cdot a_{1} \cdot L_{5}}{2 \cdot L_{0} \cdot g}-\frac{m_{2} g \cdot a_{1} \cdot L_{4}}{2 \cdot L_{0} \cdot g}=-112.1 \mathrm{~N} \\
P_{B} R_{a}=P_{B}-\frac{m_{1} g \cdot a_{1} \cdot L_{5}}{2 \cdot L_{0} \cdot g}-\frac{m_{2} g \cdot a_{1} \cdot L_{4}}{2 \cdot L_{0} \cdot g}=637.9 \mathrm{~N} & P_{D} R_{a}=P_{D}+\frac{\mathrm{m}_{1} g \cdot a_{1} \cdot L_{5}}{2 \cdot L_{0} \cdot g}+\frac{\mathrm{m}_{2} g \cdot a_{1} \cdot L_{4}}{2 \cdot L_{0} \cdot g}=4262.1 \mathrm{~N}
\end{array}
$$

Load applied in lateral direction PntLd

$$
\begin{array}{ll}
P_{A t} L_{a}=\frac{m_{1} g \cdot a_{1} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=255.1 \mathrm{~N} & P_{c_{t} L_{a}=}=\frac{m_{1} g \cdot a_{1} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=-255.1 \mathrm{~N} \\
P_{B t L_{a}}=-\frac{m_{1} g \cdot a_{1} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=-255.1 \mathrm{~N} & P_{D_{t} L_{a}}=\frac{m_{1} g \cdot a_{1} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=255.1 \mathrm{~N}
\end{array}
$$

5. During deceleration to the right Load applied in radial direction PnRd and Load applied

 in lateral direction PntRd$P_{A} R_{d}=P_{A}-\frac{m_{1} g \cdot a_{3} \cdot L_{5}}{2 \cdot L_{0} \cdot g}-\frac{m_{2} g \cdot a_{3} \cdot L_{4}}{2 \cdot L_{0} \cdot g}=1429.4 \mathrm{~N}$
$P_{B} R_{d}=P_{B}+\frac{m_{1} g \cdot a_{3} \cdot L_{5}}{2 \cdot L_{0} \cdot g}+\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~L}_{0} \cdot g}=4220.6 \mathrm{~N}$
$P_{c} R_{d}=P_{c}+\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{5}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}}+\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}}=3470.6 \mathrm{~N}$
$P_{D} R_{d}=P_{D}-\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{5}}{2 \cdot \mathrm{~L}_{0} \cdot g}-\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}}=679.4 \mathrm{~N}$

Load applied in lateral direction PntRd
$P_{A_{t}} R_{d}=-\frac{m_{1} g \cdot a_{3} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=-85 \mathrm{~N}$

$$
P_{B t} R_{d}=\frac{m_{1} g \cdot a_{3} \cdot L_{3}}{2 \cdot L_{0} \cdot g}=85 \mathrm{~N}
$$

$$
\begin{aligned}
& P_{\mathrm{ct}_{\mathrm{t}} R_{\mathrm{d}}}=\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{3}}{2 \cdot \mathrm{~L}_{0} \cdot \mathrm{~g}}=85 \mathrm{~N} \\
& \mathrm{P}_{\mathrm{Dt}} R_{\mathrm{d}}=-\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{a}_{3} \cdot \mathrm{~L}_{3}}{2 \cdot \mathrm{~L}_{0} \cdot g}=-85 \mathrm{~N}
\end{aligned}
$$

(3) Combined radial and thrus load $P_{\text {En }}$

1. In uniform motion PEn

$P_{E A}=P_{A}=2325 \mathrm{~N}$	$P_{E C}=P_{C}=2575 \mathrm{~N}$
$P_{E B}=P_{B}=3325 \mathrm{~N}$	$P_{E D}=P_{D}=1575 \mathrm{~N}$

2. During acceleration to the left PEnLa PenLa
$P_{E A L_{a}}=\left|P_{A} L_{a}\right|+\left|P_{A t} L_{a}\right|=617 \mathrm{~N}$
$P_{E B L_{a}}=\left|P_{B} L_{a}\right|+\left|P_{B t} L_{a}\right|=6267.1 \mathrm{~N}$
$P_{E c} L_{a}=\left|P_{c} L_{a}\right|+\left|P_{c t} L_{a}\right|=5517.1 \mathrm{~N}$
$P_{E D} L_{a}=\left|P_{D} L_{a}\right|+\left|P_{D t} L_{a}\right|=1367.1 \mathrm{~N}$
3. During acceleration to the right $\mathrm{P}_{\mathrm{En} R} \mathrm{a}$
$P_{E A R}=\left|P_{A} R_{a}\right|+\left|P_{A t} R_{a}\right|=5237.2 \mathrm{~N}$
$P_{E B} R_{a}=\left|P_{B} R_{a}\right|+\left|P_{B t} R_{a}\right|=893 \mathrm{~N}$
$P_{E c} R_{a}=\left|P_{c} R_{a}\right|+\left|P_{c t} R_{a}\right|=367.2 \mathrm{~N}$
$P_{E D} R_{a}=\left|P_{D} R_{a}\right|+\left|P_{D t} R_{a}\right|=4517.2 \mathrm{~N}$
$P_{E D L}=\left|P_{D} L_{d}\right|+\left|P_{D t} L_{d}\right|=2555.6 \mathrm{~N}$
4. During deceleration to the left PenLa
$P_{E A} L_{d}=\left|P_{A} L_{d}\right|+\left|P_{A t} L_{d}\right|=3305.6 \mathrm{~N}$
$P_{E b} L_{d}=\left|P_{b} L_{d}\right|+\left|P_{b t} L_{d}\right|=2514.4 \mathrm{~N}$
$P_{E c} L_{d}=\left|P_{c} L_{d}\right|+\left|P_{c t} L_{d}\right|=1764.1 \mathrm{~N}$
5. During deceleration to the right $P_{\text {EnLa }}$
$P_{E A R} R_{d}=\left|P_{A} R_{d}\right|+\left|P_{A t} R_{d}\right|=1514.4 N$
$P_{E B} R_{d}=\left|P_{B} R_{d}\right|+\left|P_{B t} R_{d}\right|=4305.6 \mathrm{~N}$
$P_{E c} R_{d}=\left|P_{c} R_{d}\right|+\left|P_{c t} R_{d}\right|=3555.6 \mathrm{~N}$
$P_{E D} R_{d}=\left|P_{D} R_{d}\right|+\left|P_{D t} R_{d}\right|=764.4 \mathrm{~N}$

A36
(4) Static Safety Factor

As shown above, it is during acceleration of the B Linear Guide to the left when the maximum load is exerted on the Linear Guide. Therefore, the static safety factor (fs) becomes as follows :
$f_{s}=\frac{C_{0}}{6267.1}=\frac{88329}{6267.1}=14.9$
(5) Mean Load Pmn

Unbalanced load at each Linear Guide block will cause during acceleration Uniform motion, and deceleration mean load (Pmn) is a requirement to find out nominal life. First, calculate the move distances (S1, S2, S3) during acceleration, uniform motion, and deceleration of Linear
$\mathrm{S}_{1}=\frac{1}{2} \mathrm{t}_{1} \mathrm{~V}=\frac{1}{2}(0.05)(0.5) \mathrm{m}=0.0125 \mathrm{~m}=12.5 \mathrm{~mm} \quad \mathrm{~S}_{3}=\frac{1}{2} \mathrm{t} 3 \mathrm{~V}=(0.15)(0.5) \mathrm{m}=0.0375 \mathrm{~m}=37.5 \mathrm{~mm}$
$\mathrm{S} 2=\mathrm{t} 2 \mathrm{~V}=(2.8)(0.5) \mathrm{m}=1.4 \mathrm{~m}=1400 \mathrm{~mm}$
Nominal Life Ls=S1+S2+S3=1450mm

The mean load on each LM block is as follows :
$P_{A}=\sqrt[3]{\frac{1}{2 \cdot L s}\left(P_{E A \ell a}^{3} \cdot S_{1}+P_{E A}^{3} \cdot S_{2}+P_{E A \ell d}^{3} \cdot S_{3}+P \stackrel{3}{E A R a} \cdot S_{1}+P_{E A}^{3} \cdot S_{2}+P_{E A R d}^{3} \cdot S_{3}\right)}=2367.3 \mathrm{~N}$
$P m_{B}=\sqrt[3]{\frac{1}{2 \cdot L s}\left(P_{E B \ell a}^{3} \cdot S_{1}+P_{E B}^{3} \cdot S_{2}+P_{E B \ell d}^{3} \cdot S_{3}+P_{E B R R}^{3} \cdot S_{1}+P_{E B}^{3} \cdot S_{2}+P_{E B R d}^{3} \cdot S_{3}\right)}=3355.9 \mathrm{~N}$

$P m_{D}=\sqrt[3]{\frac{1}{2 \cdot L s}\left(P_{E D \ell a}^{3} \cdot S_{1}+P_{E D}^{3} \cdot S_{2}+P_{E D \ell d}^{3} \cdot S_{3}+P_{E D R a}^{3} \cdot S_{1}+P_{E D}^{3} \cdot S_{2}+P_{E D R d}^{3} \cdot S_{3}\right)}=1638.9 \mathrm{~N}$
(6) Nominal life Ln (Assume Fw = 1.5)
$\left(L_{A}=\frac{C}{f_{w} \cdot P_{m A}}\right)^{3} \cdot 50=115939 \mathrm{~km}$
$\left(L c=\frac{C}{f_{w} \cdot P_{m c}}\right)^{3} \cdot 50=86113.86 \mathrm{~km}$
$\left(L_{B}=\frac{C}{f_{w} \cdot P_{m B}}\right)^{3} \cdot 50=40697 \mathrm{~km}$
$\left(L_{D}=\frac{C}{f_{w} \cdot P_{m D}}\right)^{3} \cdot 50=349407.7 \mathrm{~km}$
※From these calculations, 40697 km (the running distance of Linear Guide No.8) is obtained as the service life of the Linear Guide used in a machine or system under the operating conditions specified above. \not

In the example above, we assume that we have two loads (W_{1} and W_{2}). If there is only one load W_{1}, W_{2} should be re-calculated by being set as zero. The appropriate formula determined by condition of loading

Example (II

(1) Operation Conditions-Vertical Installations

Table (L type) has combined blocks weigh W_{1} and W_{2}. Furthermore, the mass W_{0} is applied during uniform ascent by Distance 1000mm. After the mass is dropped, empty table is removed during uniform descent. The table has total four Linear Guide blocks

Model number: TRH30FE
(dynamic-load rating: $\mathrm{C}=47 \mathrm{kN}$)
$L_{0}=300 \mathrm{~mm}$
(static-load rating : Co $=88.329 \mathrm{kN}$)
$L_{1}=80 \mathrm{~mm}$
$L_{2}=50 \mathrm{~mm}$
$L_{3}=280 \mathrm{~mm}$
$\mathrm{L}_{4}=150 \mathrm{~mm}$
$L_{5}=250 \mathrm{~mm}$

Weight of Table1: $\mathrm{m}_{1} \mathrm{~g}=4000 \mathrm{~N}$
Weight of Table2 : $\mathrm{m}_{2} \mathrm{~g}=2000 \mathrm{~N}$

Fig 1.8.4 Operating Condition
(2) Load Exerted on the Linear Guide by the Linear Guide Block

Base on the third condition of Linear Guide is regarding vertical motion to figure out load exerted. 【please see page 16. No.3】. Combined influence by $\mathrm{mog}, \mathrm{m}_{1} \mathrm{~g}, \mathrm{~m}_{2} \mathrm{~g}$

1. Load exerted on the Linear Guide in radial direction Pnu by the Linear Guide block.

$$
\begin{aligned}
& P_{A U}=\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~L}_{0}}+\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{~L}_{5}}{2 \cdot \mathrm{~L}_{0}}+\frac{\mathrm{mog} \cdot \mathrm{~L}_{3}}{2 \cdot \mathrm{Lo}_{0}}=2767 \mathrm{~N} \\
& P_{C u}=-\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~L}_{0}}-\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{~L}_{5}}{2 \cdot \mathrm{Lo}_{0}}-\frac{\mathrm{mog} \cdot \mathrm{~L}_{3}}{2 \cdot \mathrm{Lo}_{0}}=-2767 \mathrm{~N} \\
& P_{B} \cup=-\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~L}_{0}}-\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{~L}_{5}}{2 \cdot \mathrm{Lo}_{0}}-\frac{\mathrm{Mog} \cdot \mathrm{~L}_{3}}{2 \cdot \mathrm{~L}_{0}}=-2767 \mathrm{~N} \\
& \mathrm{P}_{\mathrm{D}}=\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{~L}_{4}}{2 \cdot \mathrm{~m}_{2} \mathrm{~g} \cdot \mathrm{~L}_{5}}+\frac{\mathrm{mog} \cdot \mathrm{~L}_{3}}{2 \cdot \mathrm{Lo}_{0}}+2767 \mathrm{~N}
\end{aligned}
$$

Load exerted on the Linear Guide in lateral direction PnTu by the Linear Guide block.

$$
\begin{aligned}
& P_{A T U}=\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}+\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}+\frac{\mathrm{mog} \cdot \mathrm{~L}_{1}}{2 \cdot \mathrm{~L}_{0}}=767 \mathrm{~N} \quad \text { PcTu }=-\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}-\frac{\mathrm{m}_{2 \mathrm{~g}} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}-\frac{\mathrm{mog} \cdot \mathrm{~L}_{1}}{2 \cdot \mathrm{~L}_{0}}=-767 \mathrm{~N} \\
& \mathrm{P}_{\mathrm{B}} \mathrm{~T}_{\mathrm{u}}=-\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}-\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{Lo}}-\frac{\mathrm{mog} \cdot \mathrm{~L}_{1}}{2 \cdot \mathrm{Lo}}=-767 \mathrm{~N} \\
& P_{D T U}=\frac{\mathrm{m}_{1} \mathrm{~g} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}+\frac{\mathrm{m} 2 \mathrm{~g} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}+\frac{\mathrm{mog} \cdot \mathrm{~L}_{1}}{2 \cdot \mathrm{LO}_{0}}=767 \mathrm{~N}
\end{aligned}
$$

2. Load exerted on the Linear Guide in radial direction Pno by the Linear Guide block

$$
\begin{array}{ll}
P_{A D}=\frac{m_{1} g \cdot L_{4}}{2 \cdot L_{0}}+\frac{m_{2} g \cdot L_{5}}{2 \cdot L_{0}}=1833.3 \mathrm{~N} & P_{C D}=-\frac{m_{1} g \cdot L_{4}}{2 \cdot L_{0}}-\frac{m_{2} g \cdot L_{5}}{2 \cdot L_{0}}=-1833.3 \mathrm{~N} \\
P_{B D}=-\frac{m_{1} g \cdot L_{4}}{2 \cdot L_{0}}+\frac{m_{2} g \cdot L_{5}}{2 \cdot L_{0}}=-1833.3 \mathrm{~N} & P_{D D}=\frac{m_{1} g \cdot L_{4}}{2 \cdot L_{0}}+\frac{m_{2} g \cdot L_{5}}{2 \cdot L_{0}}=1833.3 \mathrm{~N}
\end{array}
$$

Load exerted on the Linear Guide in lateral direction PnTo by the Linear Guide block

$$
\begin{array}{ll}
P_{A} T_{D}=\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}+\frac{\mathrm{mog} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}=500 \mathrm{~N} & P_{C} T_{D}=-\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}-\frac{\mathrm{mog} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}=-500 \mathrm{~N} \\
P_{B} T_{D}=-\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}-\frac{\mathrm{mog} \cdot \mathrm{~L}_{2}}{2 \cdot L_{0}}=-500 \mathrm{~N} & P_{D} T_{D}=\frac{\mathrm{m}_{2} \mathrm{~g} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}+\frac{\mathrm{mog} \cdot \mathrm{~L}_{2}}{2 \cdot \mathrm{~L}_{0}}=500 \mathrm{~N}
\end{array}
$$

(3) Combined radial and thrust load Pen

1. During ascent

$$
\begin{aligned}
& P_{E A U}=\left|P_{A D}\right|+\left|P_{A} T U\right|=3534 N \\
& P_{\text {Ebu }}=\left|P_{\text {bd }}\right|+\left|P_{B} T U\right|=3534 N \\
& P_{\text {ECU }}=\left|P_{C D}\right|+\left|P_{C T U}\right|=3534 N \\
& P_{\text {EDU }}=\left|P_{\text {DD }}\right|+\left|P_{D} T U\right|=3534 N \\
& P_{\text {EAD }}=\left|P_{A D}\right|+\left|P_{A} T_{D}\right|=2333.3 \mathrm{~N} \\
& P_{\text {Ebd }}=\left|P_{\text {bd }}\right|+\left|P_{B} T_{D}\right|=2333.3 \mathrm{~N} \\
& P_{E C D}=\left|P_{C D}\right|+\left|P_{C} T_{D}\right|=2333.3 \mathrm{~N} \\
& P_{E D D}=\left|P_{D D}\right|+\left|P_{D} T_{D}\right|=2333.3 \mathrm{~N}
\end{aligned}
$$

2. During descen
(4) Static Safety Factor

The static safety factor (f_{s}) of a machine or system under the operating conditions shown above becomes the following :

$$
f_{s}=\frac{C_{0}}{3534 N}=\frac{88329}{3534}=24.99
$$

(5) Mean Load Pmn

$$
\begin{aligned}
& P_{A}=\sqrt[3]{\frac{1}{2 \ell S}\left(\operatorname{PEAU}^{3} \cdot \ell_{S}+\operatorname{PEAD}^{3} \cdot \ell_{S}\right)}=3051.7 \mathrm{~N} \quad \mathrm{Pm}_{\mathrm{C}}=\sqrt[3]{\frac{1}{2 \ell \mathrm{~S}}\left(\mathrm{PECU}^{3} \cdot \ell_{\mathrm{S}}+\mathrm{PECD}^{3} \cdot \ell_{\mathrm{S}}\right)}=3051.7 \mathrm{~N} \\
& P m_{B}=\sqrt[3]{\frac{1}{2 \ell S}\left(\operatorname{PEBU}^{3} \cdot \ell_{S}+\operatorname{PEBD}^{3} \cdot \ell_{S}\right)}=3051.7 \mathrm{~N} \quad \mathrm{Pm}_{\mathrm{D}}=\sqrt[3]{\frac{1}{2 \ell_{S}}\left(\mathrm{PEDU}^{3} \cdot \ell_{\mathrm{S}}+\mathrm{PEDD}^{3} \cdot \ell_{\mathrm{S}}\right)}=3051.7 \mathrm{~N}
\end{aligned}
$$

(6) Nominal life Ln (Assume $f_{w}=1.2$)
$L_{A}=\left(\frac{C}{f_{w} \cdot P_{m A}}\right)^{3} \cdot 50 k m=105704.7 \mathrm{~km}$
$L c=\left(\frac{C}{f_{w} \cdot P_{m c}}\right)^{3} \cdot 50 \mathrm{~km}=105704.7 \mathrm{~km}$
$L_{B}=\left(\frac{C}{f_{w} \cdot P_{m B}}\right)^{3} \cdot 50 \mathrm{~km}=105704.7 \mathrm{~km}$
$L D=\left(\frac{C}{f_{w} \cdot P_{m D}}\right)^{3} \cdot 50 \mathrm{~km}=105704.7 \mathrm{~km}$

1-9 Accuracy

1-9-1 Accuracy Standards
The accuracy of Linear Guide is stipulated for each type with regard to dimensional tolerances for running parallelism, height, and width; height difference among Linear Guide blocks installed on the same plane and differences in the rail-to-block lateral distance among Linear Guide blocks installed on the same rail. For details, see the standards tables for the models in question.

Running Parallelism
When an Linear Guide block runs on a Linear Guide rail bolted to the reference base, if the Linear Guide block reference surface is not fully parallel to the Linear Guide rail reference surface over the entire length of the rail, the two members have insufficient running parallelism.

Fig 1.9.1 Running Parallelism

Difference in Height M among Linear Guide Blocks
This refers to the difference between the maximum and minimum height (M) of by any Linear Guide block installed on the same plane

Difference in Rail-to-Block Lateral Distance W2 among Linear Guide Blocks
This refers to the difference between the maximum and minimum rail-to-block lateral distance $\left(\mathrm{W}_{2}\right)$ of by any Linear Guide block installed on a Linear Guide rail.

※Note. 1

With two or more sets of Linear Guide installed in parallel on the same plane, the tolerances for the rail-to-block lateral distance (W_{2}) and the differences therein among Linear Guide blocks apply to the master - rail side only.

※Note. 2

Accuracy measurements indicate mean values of measurements taken at the center or central area of each Linear Guide block.
※Note. 3
Linear Guide rails are smoothly curved so that when they are installed on a machine they are easily straightened, and pressing them onto the machine reference base enables the design accuracy to be achieved. If installed on a base lacking rigidity, such as an aluminum base, the bend of LinearGuide rails may affect machine precision. In such a case, the straightness should be set in advance.

1-9-2 Averaging Effect

The Linear Guide incorporates precision balls with high sphericity, enabling a constrained structure to be created with no clearance. Moreover, in a multiple-axis configuration with the axes arranged in parallel to one another, the component Linear Guides therein combine to form an entire constrained guideway.

That is the misalignment of the machine base on which the Linear Guides are installed can be averaged and absorbed by the constrained structure, regardless of the misalignment incomplete straightness levelness, and parallelism due to errors in machining and assembly of the machine base. The extent of the averaging effect varies with the degree of misalignment, i.e., errors in length and other dimensions the magnitude of the Linear Guide preload, and the number of axes constrained shows measurements of the motion accuracy of the table shown (perpendicularity in the lateral direction), which were taken by performing arbitrary misalignment of either of the two rails of the table.The averaging effect illustrated above makes it easier to create a guideway with a high degree of motion accuracy.

Fig 1.9.2

Fig 1.9.3 Misalignment profile

1-10 Predicting the Rigidity

1-10-1 Determining Radial Clearance and the Magnitude of a Preload Radial Clearance The radial clearance of the Linear Guide is the displacement of Linear Guide block caused by the vertical plane when the block is lightly pushed forward or backward at the longitudinal center of the Linear Guide rail secured in place.

The radial clearance is divided into Slight Clearance. (ZF), No Preload (ZO), Clearance Z1 (under a light preload), Z2 (under a medium preload) and Z3 (under a heavy preload). The most appropriate clearance can be selected in accordance with the intended applications. The radial clearances and preload values are standardized for each type of Linear Guide.

The radial clearance of the Linear Guide significantly affects its running precision, loadwithstanding performance, and rigidity. It is therefore particularly important to select the correct clearance for your purpose. In generally, a negative clearance has a favorable effect on service life and precision, if the Linear Guide is subjected to significant vibration and impact due to reciprocal motion.

Preload

The preload is an internal load exerted on rolling elements in the Linear Guide block, for the purposes of increasing the block rigidity and reducing clearances. Clearance symbols for the Liner Guide, ZF, Z0, Z1, Z2 and Z3 represent negative clearances resulting from a preload and are expressed in negative values. All Linear Guide models (excluding the separate type) are shipped with their clearances adjusted to user specifications. Therefore, it is not necessary for users to adjust the preload themselves. We will select the clearances best suited to your operating conditions. Please contact us.

Difference between the displacement under Preload and under no preload. (vertical installations)

Fig 1.9.4 Horizontal displacement of the table

Table1.10.1

	Preload		
	ZF~Z0 Slight Clearance, Zero Preload.	Z1 Zero Clearance, Light Preload.	Z2 Zero Clearance, Medium preload.
	The loading direction is fixed; impact and vibration are slight; two axes are installed in parallel. Very high percision is not required and the sliding resistance must be as low as possible.	The location in under an overhang and a moment load. The Linear Guide is used in a one-axis configuration. The location requires a light load and high precision.	The location requires light rigidity and is subjected to vibration and impact. The application is a heavycutting machine tool or the like.
	-Beam-welding machine. Book-binding machine. - automatic packing machine. - general-industrial-machine. - X-and Y-axes. - automatic sash-bar finishing machine. -welding machine. - arec cutter. tool changer. -various kinds of maternal feedeer.	Grinding-machine table feed shaft. automatic painting machine. industrial robot. various kinds of high-speed material feeder. NC drilling machine. general-industrial-machine. Z-axis. printed-cricuit-board drilling machine. electric discharge machine. measuring instrument. precision XY table.	Machining center. - NC lathe. - grinding-machine grinding -wheel feed shaft. -milling machine. - vertical-and horizontalboring machines. tool rest guide. -machine-tool Z-axis.

Applied Load and Service Life Considering
When the Linear Guide is used under a preload (medium),
the Linear Guide block receives an internal load. There-
fore, the service life should be calculated in consideration of the preload. For preload considerations, please contact us, specifying the model numbers you have selected

1-10-2 Rigidity
When the Linear Guide receives a load, the balls, Linear Guide blocks, and rails undergo elastic deformation within a permissible range. The ratio of displacement at this deformation to the load received is known as the rigidity value. The rigidity of the Linear Guide increases as the preload increases. Fig shows the differences among the

Zo: preload
Fig 1.10.2 Rigidtry Data
$\delta=\frac{\mathrm{P}}{\mathrm{K}} \mu \mathrm{m}$
δ : Displacement
P: Load
K : Rigidity Value

1-11 Installation of Linear Guide

1-11-1 Datum Representation
Jointed rail should be installed by following the arrow sign and ordinal number which is marked on the surface of each rail (see Fig1.11.1) :

Marks

S30VN $120618-0001-P$			
Product Code	Production Number		Accuracy
:---			
Level			

Fig 1.11.1 Datum Representation preloading remains valid until the load increases to some 2.8 times the preloadapplied.

1-11-2 Recognizing of Master Rail

Linear rails to be applied on the same plane are all marked with the same serial number, and " M " is marked at the end of serial number for indicating the master rail, shown as the figure below. The reference side of carriage is the surface where is ground to a specified accuracy. For normal grade (N), it has no mark " M " on rail which means any one of rails with same serial number could be the master rail.

Fig 1.11.2 Recognizing of Master Rail

Combined Use of Rail and Carriage

For combined use, the rail and carriage must have the same serial number. When reinstalling the carriage back to the rail, make sure they have the same serial number and the reference side of carriage should be in accordance with that of rail.

1-11-3 For Butt-joint Rail

Accuracy may deviate at joints when carriages pass the joint simultaneously. Therefore, the joints should be interlaced for avoiding such accuracy problem.

Fig 1.11.3 Butt-joint

Fig 1.11.4

1-11-4 Mounting Methods

Linear rail is designed to absorb the load of four dimensions; therefore it can be mounted according to the load and structure of the equipment.

Table 1.11.1

| (A)Three-Axis Configuration. | (B)Three-Axis Configuration. |
| :---: | :---: | :---: |
| n | |

A48
Table 1.11 .1

1-11-5 Common Fastening Method of Linear Guide
Table 1.11.2
Fastened by pressing both Linear Guide blocks
and rail against their respective reference surfaces.
Fastened by using a hold-down plate.

A50

Mounting Procedures
※ Sample Installation of the Linear Guide on a Vibration-and-Impact Susceptible
Machine that Requires Rigidity and High Precision. ※

Fig 1.11.5 Mounting the Linear Guide on a Machine Susceptible to Vibration and Impact
Mounting the Linear Guide Rail
(A) Prior to assembly, always remove all burrs, dents, dust, and the like from the mounting surface of the machine on which the Linear Guide is to be installed. (Fig 1.11.6)
CAUTION : The Linear Guide is delivered with an anticorrosive oil applied. Prior to assembly, be sure to remove the oil from the reference surface using a wash oil. If the anticorrosive oil is removed, the surface is likely to rust. The application of a low-viscosity spindle oil or the like is therefore recommended.
(B) Gently place an Linear Guide rail on the base, and temporarily tighten the bolts so that the rail lightly contacts the mounting surface. Hold the line marked side of the Linear Guide rail against matching the base-side reference surface (Fig 1.11.7)
CAUTION: Use clean bolts to fasten the Linear Guide. When inserting bolts into the Linear Guide rail mounting holes, make sure the threads of the bolt and nut are properly aligned. (Fig 1.11.8)

Fig 1.11.6 Checking the Mounting Surface.

Fig 1.11.7 Holding an Linear Guide rail against the Reference Surface

Fig 1.11.8 Checking Bolt Play

Table 1.11.3 Tightening Torque for Hexagonal-Socket Head Bolts
Unit : N-cm

Model No.	Tightening Torque		
	Iron	Casting	Aluminum
M2	58.2	39.2	29.4
M2.3	78.4	53.9	39.2
M2.6	118	78.4	58.8
M3	196	127	98.0
M4	412	274	206
M5	882	588	441
M6	1370	921	686
M8	3040	2010	1470
M10	6760	4510	3330
M12	11800	7840	5880
M14	15700	10500	7840
M16	19600	13100	9800
M20	38200	25500	19100
M22	51900	34800	26000
M24	65700	44100	32800
M30	130000	87200	65200

(C) Tighten the Linear Guide rail set screws in sequence, until they lightly contact the rail-mounting side surface (Fig 1.11.9).
(D) Using a torque wrench, tightening the mounting bolts to the specified torque (Fig 1.11.10).
CAUTION : The sequence for tightening the Linear

Fig 1.11.9 Tightening Set Screws

Fig 1.11.10 Full Tightening of Mounting Bolts
(E) Following the same procedures for the remaining Linear Guide rails, complete Linear Guide rail installation.

Fig 1.11.11
(B) Using set screws, hold the master-rail Linear Guide block against the table reference-side surface, and position the table.
(C) Fully tighten the mounting bolts on both the master and subsidiary sides. This completes Linear Guide block installation.
CAUTION : To ensure uniform fastening of the table, tighten the mounting bolts diagonally, as shown in (Fig 1.11.11) in accordance with the numbers.

The method specified above minimizes the time required to ensure the straightness of the Linear Guide-rail. Moreover, there is no need to use the fastening knock pins, thereby greatly reducing the required assembly man-hours.
※※※※※ Sample Installation of the Linear Guide without Set Screws on the Master
Linear Guide Rail $※ ※ ※ ※ ※$

Fig 1.11.12 Mounting the Linear Guide without Set Screws on the Master Linear Guide Rail

Mounting the Master Linear Guide Rail
After temporarily tightening the mounting bolts, use a small device or the like to firmly press the rail to the side, against the reference section. Fully tighten the mounting bolts. Repeat this for each mounting bolt in sequence. (Fig 1.11.13)

Mounting the Subsidiary Linear Guide Rai

To ensure parallelism of the subsidiary Linear Guide rail with the master Linear Guide rail properly mounted, the following methods are recommended.

Use a Straight Edge

Position a straight edge between the two rails so that it is parallel with the master-Linear Guide-rail-side reference surface, and confirm parallelism using a dial gauge. Using the straight edge as a reference, confirm subsidiary-rail straightness from one end to the other, tightening the mounting bolts in sequence as you go (Fig 1.11.14).

Fig 1.11.13 Mounting the master Linear Guide rail

Fig 1.11.14 Use a straight edge
$\xrightarrow{\text { TBIMOTION }}$

Move the Table
Fasten two Linear Guide blocks on the master side to the]table (or a temporary measurement table) Temporary fasten the subsidiary Linear Guide rail and block to thebase and table. From the dial-gauge stand, have a dial gauge contact the subsidiary-rail Linear Guide block side.Move the table from the rail end and check the parallelism between the block and the subsidiary Linear Guide rail,fastening the bolts in sequence as you go. (Fig 1.11.15)

Compare to the Master Linear Guide Rail Make sure the master Linear Guide rail is properly installed.Temporarily fasten the subsidiary Linear Guide rail in place.Place a table on the Linear Guide blocks mounted on themaster rail and on the temporarily fastened subsidiaryLinear Guide rail. Fully tighten the mounting bolts on the two Linear Guide blocks on the subsidiary rail. With the remaining Linear Guide block on the subsidiary rail temporarily fastened, correct the position of the subsidiary Linear Guide rail, fully tightening its mounting bolts insequence as you go. (Fig 1.11.16)

Method Using a Jig
Using a jig as shown in (Fig 1.11.17) confirm parallelism between the master-rail-side reference surface and that of the subsidiary rail at each mounting hole, and fully tighten the mounting bolt there.

Fig 1.11.15 Move the table

Fig 1.11.16 Compare to the master Linear Guide rail

※ Sample Installation of the Linear Guide without a Reference Section for the
Master Linear Guide Rail. ※

Fig 1.11.18 Installation of the Linear Guide without a Reference Section for the Master Linear Guide Rail

Mounting the Master Linear Guide Rail
Use a Temporary Reference Surface
Linear Guide-rail straightness from end to end can be achieved with the aid of a surface temporarily set as the reference surface near the Linear Guide-rail mounting surface on the base. For this method, however, two Linear Guide blocks must be fastened together, positioned on top of each other, while attached to a measurement plate, as shown in (Fig 1.11.19).

Use a Straight Edge
After temporarily tightening the mounting bolts, use a dial gauge to check the straightness of the Linear Guide-rail-side reference surface from end to end, fully tightening the mounting bolts in sequence as you go, as shown in (Fig 1.11.20).

To mount the subsidiary Linear Guide rail, follow the procedures specified in the second paragraph on the previous page.

Shoulder Heights and Chamfers
Improper shoulder heights and chamfers of mounting surfaces will cause deviations in accuracy and rail or block interference with the chamfered part．When recommended shoulder heights and chamfers are used，problems with installation accuracy should be eliminated．

Fig 1．11．21

Table 1．11．4 Shoulder Heights and Chamfers

Model No．	Max．chamfers of the rail R1	Max．chamfers of the block R2	Max．chamfers of the rail E1	Max．chamfers of the rail E2	Max．chamfers of the block H1
TR15	0.5	0.5	3	4	3.2
TR20	0.5	0.5	3.5	5	4.6
TR25	1.0	0.9	5	5	5.8
TR30	1.0	1	5	5	7
TR35	1.0	1	6	8	8
TR45	1.0	1	1.5	8	10
TR55	1.5	1.5	10	13	
TR65	1.5		8	14.3	

1－12 Lubrication

Lubrication
For long－term use of a linear motion system under normal conditions，good lubrication is a must．If lubricant is not used，rolling parts wear quickly，and the service life of the system is shortened considerably．
A lubricant：
（1）Reduces friction on moving parts，thereby preventing seizure and lessening wear．
（2）Forms an oil film on rolling surfaces，thus decreasing stress that develops on the surfaces and safeguarding the system against rolling fatigue．
（3）Covers metal surfaces with an oil film，thereby preventing rust．
To tap the full functionality of a linear motion system，it is essential to provide lubrication that best meets the system service conditions．
※ That linear motion systems，even if sealed，cannot completely eliminate leakage of lubricants no matter how negligible the amount of leakage is at any given time．It is therefore necessary to replenish the lubricant periodically according to the operating conditions for the lubricant in question．※

Classification of Lubricants
Primarily grease and sliding surface oil are used as lubricants for linear motion systems． In general a lubricant must ：
（1）Form a strong oil film．
（5）Be noncorrosive．
（2）Reduce wear as much as possible．
（6）Be highly rust－preventive．
（3）Have high wear resistance
（4）Have high thermal stability．
（7）Be free from dust and some moisture．
（8）Be free from significant fluctuations in consistency against repeated agitation of grease．

Table1．12．1 Lubricants in General Use

Lubricant	Classification	Item
Grease	Lithium－based grease（JS No．2） Urea－base grease（JS No．2）	＊4FB Grease（TBI MOTION） Albania Grease No．2（Showa Shell Sekiyu） Daphne Eponex Grease No．2 （Idemitsu Kosan）or equivalent．
Oil	Sliding surface oil or turbine oil ISOVG32～68	Super Multi 32 to 68（Idemitsu Kosan） Vactra No．2S（Mobile Oil） DT Oil（Mobile Oil）
	Tonner Oil（Showa Shell Sekiyu） or equivalent	

※ Feeding Should be performed every 100km of travel under normal usage conditions to prevent incomplete lubrication by exhausted lubrication．※

1-13 Precautions of Linear Guide

Handling
(1) Tilting the linear guideway may cause the carriage falling out from the rail by their own weight.
(2) Beating or Dropping the linear guideway may cause its function to be damage, even if the product looks intact.
(3) Do not disassemble the carriage, this may cause contamination to enter into the carriage or decrease the installation accuracy.
Lubrication
(1) Please remove the anti-rust oil.
(2) Please do not mix different kinds of lubrication.
(3) Lubrication can be varied, please contact TBI MOTION before use.

Usage
(1) The temperature of the place where linear guideways are used should not exceed $80^{\circ} \mathrm{C}$. A higher temperature may damage the plastic end cap, do not exceed $100^{\circ} \mathrm{C}$ in friction.
(2) Using under special conditions, such as constant vibration, high dust or the temperature exceed our suggested...etc., please TBI MOTION contact

Storage

When storing the linear guideway, enclose it in a package and store it in a horizontal orientation while avoiding high temperature, low temperature and high humidity.
2. TBI MOTION Linear Guide

2-1 The Types of TBIMOTION Linear Guide

In an effort to meet customer's requirement, TBI MOTION offers several different types of guides. Except for TR international standard series, TBI MOTION develops TR series with self lubrication system which is designed for environment with high pollution and miniature TM series for small machines and semiconductor industry.

> Table 2.1.1 TBI MOTION Linear guide table with all series

Type	Height of Assembly Type	Square	Flange Mounting from Above, Mounting from Below
TR	High-Assembly	TRH-V	TRH-F
	Low-Assembly	TRS-V	TRS-F
	Middle-Assembly	TRC-V	-
TM	-	TM-N	-
	-	TM-W	-

Table 2.1.2 TBI MOTION Linear Guide - Type \& Series

Type	Accessory	Characteristics	End Cap
TR	Standard : Strong Top and Bottom Seal + Wiper	Gouble Type	Standard type
	U : Strong Inner Seal		
	UZ : Strong Inner Seal+Double end Seals		
	DD : Strong Bottom Seal+Single-lip end seals	Smooth Movement	
	UD : Strong Inner Seal+Single-lip end seals		
	XN : Strong Bottom Seal+Strong Double-lip end seals	Strong dust-proof Environment with high pollution	Reinforcement Type
	UN : Strong Top Seal+Strong Bottom Seal+Double-lip end seals		
	ZN : Strong Top Seal+Strong Bottom Seal+Strong Two Double-lip end seals		
	WW : Strong Bottom Seal+Felt+Strong Double-lip end seals	Self-lubrication/ Strong dust-proof Application with low rating load	
	WU : Strong Top Seal+Strong Bottom Seal+Felt+Strong Double-lip end seals		
	WZ : Strong Top Seal+Strong Bottom Seal+Felt+Strong Two Double-lip end seals		
	SU : Strong Top Seal+Strong Bottom Seal+Strong Double-lip end seals+Strong Metal Scraper	Strong dust-proof / Application with low rating load	
	SZ : Strong Top Seal+Strong Bottom Seal+Strong Two Double-lip end seals+Strong Metal Scraper		
	DU : Strong Top Seal+Strong Bottom Seal+Strong Double-lip end seals+Felt+Strong Metal Scraper	$\begin{aligned} & \text { Self--lubrication/ } \\ & \text { Strong dust-proof / } \\ & \text { Application with low } \\ & \text { rating load } \\ & \hline \end{aligned}$	
	DZ : Strong Top Seal+Strong Bottom Seal+Strong Two Double-lip end seals+Felt+Strong Metal Scraper		
	BN : Strong Bottom Seal+Strong Double-lip end seals+Oiler	Long effects Self-lubrication/ Strong dust-proof	
TM	-	$\begin{gathered} \text { Standard } \\ \text { Miniature type } \end{gathered}$	Miniature type
	-	$\begin{gathered} \hline \text { Wide } \\ \text { Miniature type } \end{gathered}$	

※If Strengthen seals and Felt is required, please upgrade the block with enhanced end cap. $\begin{aligned} & \text {. }\end{aligned}$ ※Strengthen seals come in blue, if standar seals is required, please order it with code XNA..

TBIMOTION

2-2 TRH / TRS / TRC International Standard Linear Guide

2-2-1 TBI MOTION The Characteristics of TR Series Smooth Movement
TBI MOTION the circulation system of TBI Linear Guide Block designed to perform smooth movement

High Stability

TBI MOTION Linear Guide block designed
under TBI's exclusive patent can increase

depth of material to improve the strength capacity and prevent from deflection as high stability

High Durability

TBI MOTION the exclusive contact point design promotes high rigidity. Moreover, selfaligning balances load rating in all directions. This design also improves performance in running accuracy and service life of the Linear Guide.

Easy Installation with Interchangeability
TBI MOTION Linear Guide by TBI is easy for installation even without fixture. The design of seal is combinable either for side seal or inner seal to save material.

2-2-2 The Structure of TR-Series

Circulation unit :
(1) Block, (2) Rail, (3) End Cap,
(4) Steel Balls, (5) Circulation tube.

Lubrication unit :
(6) Grease nipple.

Anti-Dust Unit :
(7) Wiper, (8) Bottom Seal,
(9) Mounting Hole Cap.

Table 2.2.1 Material

Item	Material	Hardness
TR-Rail	S55C	HRC $58^{\circ} \sim 62^{\circ}$
TR-Block	SCM420H	

2-2-3 TR-Series

(Block types)
TBI MOTION offers flange and square types of flange. The assembly height and category lists as below :

Table 2.2.2

Type	Model	Shape	Height	Rail Length	Main Application
Square	TRH-V TRC-V	Mounting from Above	$\left.\right\|_{90} ^{28}$		- Machine Centers. - NC Lathes. - Food Machine. - Grinding Machines. - CNC Machine. - Heavy Cutting
	TRS-V	Mounting from Above	$\stackrel{24}{24}$		- Punching Machine. - Injection Molding Machine. - Automation Equipment. - Transportation
Flange	TRH-F		$\stackrel{24}{24}+$	$\left.\right\|_{4000} ^{100}$	
	TRS-F		$\stackrel{24}{\downarrow}$	$\left.\right\|_{4000} ^{100}$	

2-2-4 Nominal Model Code for Non-interchangable TR Type

TR series can be classified into interchangeable and non- interchangeable types. The sizes are identical; the only difference between the two types is that the accuracy of non-interchangeable types could reach up to UP grade since TBI MOTION makes the linear guide set under strict international regulation. Interchangeable blocks and rails can be freely exchanged; however, the accuracy could be up to H grade only due to technical issue. It is much more convenient for those customers who do not need linear guides with very high accuracy to have interchangeable blocks and rails.

Nominal Mode

T

Block Type
R: Standard X: Special
Height of Assembly Type
S : Low-Assembly C : Middle-Assembly H: High-Assembly
Dimension
15, 20, 25, 30, 35, 45, 55, 65
Flange Type
F : With Flange V : without Flang
Length of Block
S: Short N: Normal L: Long E: Extra-Long
Number of Block Per Rail
EX: 2

Accessory Code

\square : Standard (Please refer to page A60)
Length of Rail
Unit : mm

Accuracy Grade

N : Normal H: High P: Precision SP : Super-Precision UP : Ultra-Precision

Preload

ZF : Slight Clearance zo : No Preload $\mathrm{Z1}$: Light Preload $\mathrm{Z2}$: Medium Preload $\mathrm{z3}$: Heavy Preload Two Sets per Axis
Two
II
Rail Special Machining
K : Tapped-Hole Rail X : Rail with Special Machining
Block Surface Treatment
S: Standard B1: Black Oxidation N1: Hard Chrome Plating P: Phosphating N3: Nickel Plating N4: Raydent
Rail Surface Treatment
S: Standard B1: Black Oxidation N1: Hard Chrome Plating P: Phosphating N3: Nickel Plating N4: Raydent

2-2-5 Nominal Model Code for Interchangable TR Type Interchangeable Type of Block :

Nominal Model

T
Block Type
R: Standard X : Special
Height of Assembly Type
S: Low-Assembly C : Middle-Assembly H: High-Assembly
Dimension
$15,20,25,30,35,45,55,65$
Flange Type
F : With Flange V : Without Flange
Length of Block
S: Short N: Normal L: Long E: Extra-Long
Accessory Code
\square : Standard (Please refer to page C33)
Accuracy Grade
N : Normal
Preload
ZF : Slight Clearance zo : No Preload
Block Surface Treatment
S: Standard B1 : Black Oxidation N1 : Hard Chrome Plating P : Phosphating N3: Nickel Plating N4: Raydent

Interchangeable Type of Rail

ヨaIn૭ yヲヨNIา

Model No．	Assembly（mm）			Block Dimension（mm）									Rail（mm）					
	H	W2	E	w	B	J	L	L1	QXe	T1	Oil Hole	N	W1	1 H1	øD	h	ød	F
TRH15VN	28	9.5	3.2	34	26	26	56.9	39.5	M4X8	9.5	M4X0．7	7	15	13	7.5	6	4.5	60
TRH15VL							65.4	48										
TRH20VN	30	12	4.6	44	32	36	75.6	54	M5X7	6.5	M6X1	14	20	16.5	9.5	8.5	6	60
TRH20VL							80.6	59										
TRH2OVE						50	99.6	78										
TRH25VN	40	12.5	5.8	48	35		81	59	M6X8	11.5	M6X1	14	23	20	11	9	7	60
TRH25VL							93	71										
TRH25VE						50	110	88										
TRH30VN	45	16	7	60	40		96.3	69.3	M8×10	11	M6X1	14	28	23	14	12	9	80
TRH30VL							107	80										
TRH30VE						60	132	105										
TRH35VN	55	18	7.5	70	50		109	79	M8×10	15	M6X1	14	34	26	14	12	9	80
TRH35VL							123	93										
TRH35VE						72	153	123										
TRH45VL	70	20.5	8.9	86	60	60	140	106	M10X15	20.5	PT1／8	12.5	45	32	20	17		105
TRH45VE						80	174	140									14	
TRH55VL	80	23.5	13	100	75	75	162	118	M12X18	21	PT1／8	12.5	53	44	23	20	16	120
TRH55VE						95	200.1	156.1										
TRH65VL	90	31.5	14	126	76	70	197	147	M16X20	19	PT1／8	12.5			26	22		150
TRH65VE						120	256.5	206.5									18	

※The above standard provided is dedicated to XN，UN，please check table 2．2．17 for detail，if other accessories is required，please refer to page A90．.

Model No．	$\begin{array}{\|c} \hline \text { (kgf) } \\ \hline \text { Load Rating } \\ \hline \end{array}$		Static Permissible Moment					Weight	
			Mx（kgf－mm）	My（kgf－mm）		Mz（kgf－mm）		ock	ail
	C	Co	Single Block	Single Block	Double Block	Single Block	Double Block	（kg）	$(\mathrm{kg} / \mathrm{m})$
TRH15VN	1206	2206	16，436	14，884	70，960	14，884	70，960	0.13	
TRH15VL	1343	2574	19，175	20，429	95，224	20，429	95，224	0.2	
TRH20VN	2050	3696	37，334	33，268	157，298	33，268	157，298	0.26	
TRH2OVL	2125	3891	39，299	36，965	176，924	36，965	176，924	0.29	2.28
TRH2OVE	2553	5058	51，089	63，229	284，163	63，229	284，163	0.38	
TRH25VN	2581	4503	52，239	43，407	207，324	43，407	207，324	0.54	
TRH25VL	2875	5254	60，945	59，579	277，678	59，579	277，678	0.55	3.17
TRH25VE	3248	6255	72，554	85，112	391，311	85，112	391，311	0.68	
TRH30VN	3807	6483	90，722	74，970	355，321	74，970	355，321	0.76	
TRH30VL	4098	7203	100，803	93，100	438，966	93，100	438，966	0.85	4.54
TRH30VE	4791	9004	126，003	147，000	677，068	147，000	677，068	1.12	
TRH35VN	5090	8346	142，722	106，070	519，799	106，070	519，799	1.31	
TRH35VL	5502	9328	159，512	133，367	656，509	133，367	656，509	1.52	6.27
TRH35VE	6667	12274	209，885	233，977	1，070，533	233，977	1，070，533	2	
TRH45VL	7572	12808	292，657	220，751	1，030，183	220，751	1，030，183	2.7	10.4
TRH45VE	8852	16010	365，821	348，554	1，598，703	348，554	1，598，703	3.58	
TRH55VL	14703	21613	571，342	411，729	2，019，184	411，729	2，019，184	3.60	1
TRH55VE	17349	27377	723，699	670，530	3，148，637	670，530	3，148，637	4.70	
TRH65VL	22526	31486	973，074	695，840	3，594，277	695，840	3，594，277	7.76	22.54
TRH65VE	27895	42731	1，320，601	1，307，568	6，312，759	1，307，568	6，312，759	11.15	

TRH－F Series Specifications

ヨaıกפ y৮ヨำา

Model No．	Assembly（mm）			Block Dimension（mm）										Rail（mm）						
	H	W2	E	w	B	J	t	L	L1	Qx ℓ	T1	Oil Hole	N	w1	H1	$\varnothing 口$	h	ød	F	
TRH15FN	24	16	3.2	47	38	30	8	56.9	39.5	M5X8	5.5	M4X0．7	7	15	13	7.5	6	4.5	60	
TRH15FL								65.4	48											
TRH20FN	30	21.5	4.6	63	53	40	10	75.6	54	M6X10	6.5	M6X1	14	20			8.5		60	
TRH20FL								80.6	59											
TRH20FE								99.6	78											
TRH25FN	36	23.5	5.	70	57	45	12	81	59	M8×12	7.5	M6X1	14	23	20	11	9	7	60	
TRH25FL								93	71											
TRH25FE								110	88											
TRH30FN	42	31	7	90	72	52	15	96.3	69.3	M10x15	8	M6X1	14	28	23	14	12	9	80	
TRH30FL								107	80											
TRH30FE								132	105											
TRH35FN	48	33	7.5	100	82	62	15	109	79	M10x15	8	M6X1	14		26	14	12	9	80	
TRH35FL								123	93					34						
TRH35FE								153	123											
TRH45FL	60	37.5	8.9	120	100	80	18	140	106	M12×1810．5		PT1／8	12.5	45	32	20	17	14	105	
TRH45FE								174	140											
TRH55FL	70	43.5	13	140	116	95	29	162	118	14X17	11	PT1／8	12.5	53	44	23	20	16	12	
TRH55FE								200.1	156.1											
TRH65FL	90	53.5	14	170	142	110	37	197	147	M16×23	19	PT1／8	$12.5 \mid 63$		35	26	22	18	150	
TRH65FE								256.5	206.5						26	18				

※The above standard provided is dedicated to XN，UN，please check table 2．2．17 for detail，if other accessories is required，please refer to page A90．※

ヨaIn૭ yキヨNI

Model No．	Assembly（mm）			Block Dimension（mm）									Rail（mm）					
	H	W2	E	W	B	J	L	L1	QX ℓ	T1	Oil Hole	N	W1	H1	$ø 口$	h	Ød	F
TRS15VS	24	9.5	3.2	34	26	7	40.3	22.9	M4X5	5.5	M4X0．7	7	15	13	7.5	6	4.5	60
TRS15VN						26	56.9	39.5										
TRS20VS	28	11	4.6	42	32		49.4	27.8	M5X6	4.5	M6X1	14	20	16.5	9.5	8.5	6	60
TRS20VN						32	68.3	46.7										
TRS25VS	33	12.5	5.8	48	35		57.2	35.2	M6X6．5	4.5	M6X1	14	23	20	11	9	7	60
TRS25VN						35	81	59										
TRS30VS	42	16	7	60	40	－	67.4	40.4	M8X8	8	M6X1	14	28	23	14	12	9	80
TRS30VN						40	96.3	69.3										
TRS30VL						40	107	80										
TRS35VS	48	18	7.5	70	50		75.7	45.7	M8X8	8	M6X1	14	34	26	14	12	9	80
TRS35VN						50	109	79										
TRS35VE						72	153	123										
TRS45VN	60	20.5	8.9	86	60	60	124.5	90.5	M10X15	10.5	PT1／8	12.5	45	32	20	17	14	105

※The above standard provided is dedicated to XN，UN，please check table 2．2．17 for detail，if other accessories is required，please refer to page A90．.

Model No．	$\underset{\text {（kgat）}}{\text { Load Rating }}$		Static Permissible Moment					Weight	
			Mx（kgf－mm）	My（kgf－mm）		Mz（kgf－mm）		$\begin{gathered} \text { Block } \\ (\mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { Rail } \\ (\mathrm{kg} / \mathrm{m}) \end{gathered}$
	C	Co	Single Block	Single Block	Double Block	Single Block	Double Block		
TRS15VS	908	1471	10，957	6，420	33，531	6，420	33，531	0.09	1.32
TRS15VN	1206	2206	16，436	14，884	70，960	14，884	70，960	0.15	
TRS20VS	1398	2140	21，615	10，700	59，798	10，700	59，798	0.15	2.28
TRS20VN	1896	3307	33，404	26，459	126，998	26，459	126，998	0.23	
TRS25VS	1943	3002	34，826	18，725	97，890	18，725	97，890	0.25	3.17
TRS25VN	2581	4503	52，239	43，407	207，324	43，407	207，324	0.39	
TRS30VS	2697	3962	55，442	26，950	154，224	26，950	154，224	0.48	4.54
TRS30VN	3807	6483	90，722	74，970	355，321	74，970	355，321	0.77	
TRS30VL	4098	7203	100，803	93，100	438，966	93，100	438，966	0.74	
TRS35VS	3753	5401	92，349	42，896	235，304	42，896	235，304	0.71	6.27
TRS35VN	5090	8346	142，722	106，070	519，799	106，070	519，799	1.15	
TRS35VE	6667	12274	209，885	233，977	1，070，533	233，977	1，070，533	1.54	
TRS45VN	6758	10887	248，758	158，011	782，271	158，011	782，271	1.98	10.4

Model No．	Assembly（mm）			Block Dimension（mm）										Rail（mm）					
	H	W2	E	W	B	J	t	L	L1	QX ℓ	T1	Oil Hole	N	W	H1	øD	h	Ød	F
TRS15FS	24	18.5	3.2	52	41		7	40.3	22.9	M5X7	5.5	M4X0．7	7	15	13	7.5	6	4.5	60
TRS15FN						26		56.9	39.5										
TRS20FS	28	19.5	4.6	59	49		9	49.4	27.8	M6X9	4.5	M6X1	14	20	16.5	9.5	8.5	6	60
TRS20FN						32		68.3	46.7										
TRS25FN	33	25	5.8	73	60	35	10	81	59	M8X10	4.5	M6X1	14	23	20	11	9	7	60

※The above standard provided is dedicated to XN ，UN，please check table 2．2．17 for detail，if other accessories is required，please refer to page A90．.

TRC－V Series Specifications

	Assembly（mm）			Block Dimension（mm）									Rail（mm）					
	H	W2	E	W	B	J	L	L1	QX ℓ	T1	Oil Hole	N	W1	H1	øD	h	Ød	F
TRC25VL	36	12.5	5.8	48	35	35	93	71	M6X6．5	7.5	M6X1	14	23	20	11	9	7	60
TRC25VE						50	110	88										

※The above standard provided is dedicated to XN，UN，please check table 2．2．17 for detail，if other accessories is required，please refer to page A90．.

Model No．	$\begin{array}{\|c\|} \hline \text { Load Rating } \\ (\mathrm{kgf}) \\ \hline \end{array}$		Static Permissible Moment					Weight	
			$\begin{array}{\|l} \hline \mathrm{Mx} \text { (kgf-mm) } \\ \hline \text { Single Block } \\ \hline \end{array}$	My（kgf－mm）		Mz（kgf－mm）		$\begin{gathered} \text { Block } \\ (\mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { Rail } \\ (\mathrm{kg} / \mathrm{m}) \end{gathered}$
	C	Co		Single Block	Double Block	Single Block	Double Block		
TRS15FS	908	1471	10，957	6，420	33，531	6，420	33，531	0.12	1.32
TRS15FN	1206	2206	16，436	14，884	70，960	14，884	70，960	0.19	
TRS20FS	1398	2140	21，615	10，700	59，798	10，700	59，798	0.19	2.28
TRS20FN	1896	3307	33，404	26，459	126，998	26，459	126，998	0.29	
TRS25FN	2581	4503	52，239	43，407	207，324	43，407	207，324	0.51	3.17

Model No．	$\underset{(\mathrm{kgf})}{\text { Load Rat }^{\text {Ling }}}$		Static Permissible Moment					Weight	
			Mx（kgf－mm	My（kgf－mm）		Mz（kgf－mm）		$\begin{gathered} \text { Block } \\ (\mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { Rail } \\ (\mathrm{kg} / \mathrm{m}) \end{gathered}$
	C	Co	Single Block	Single Block	Double Block	Single Block	Double Block		
TRC25VL	2875	5254	60，945	59，579	277，678	59，579	277，678	0.44	3.17
TRC25VE	3248	6255	72，554	85，112	391，311	85，112	391，311	0.55	

2-2-6 The Standard Length and Maxima Length of Linear Rail

TBI MOTION offer our customer standard and customized rail length to meet the requirement for our customer. TBI suggsts that when ordering customized rail length, to prevent unsstablize running performance after mounting, the end cap value G should be no greater than 1/2 F.
$L=[n-1] \cdot F+2 \cdot G$

L : Total Length of Rail (mm)

Fig 2.2.3
n : Number of Mounting Holes
F : Distance Between Any Two Holes (mm)

G: Distance from the Center of the Last Hole to the Edge (mm)

Fig 2.2.4 Monting from below

Table 2.2.5 Rail Size Chart

	M	h	E	F
TR15	$\mathrm{M} 5 \cdot 0.8 \mathrm{P}$	8	20	60
TR20	$\mathrm{M} 6 \cdot 1 \mathrm{P}$	10	20	60
TR25	$\mathrm{M} 6 \cdot 1 \mathrm{P}$	12	20	60
TR30	M8 $\cdot 1.25 \mathrm{P}$	15	20	80
TR35	M8 $\cdot 1.25 \mathrm{P}$	17	20	80
TR45	M12 $\cdot 1.75 \mathrm{P}$	24	22.5	105
TR55	M14 $\cdot 2 \mathrm{P}$	24	30	120
TR65	M20 $\cdot 2.5 \mathrm{P}$	30	35	150

The accuracy standards of TR-Series range, from normal, high, precision, super-precision and ultra-precision. It allows our user to choose according to the accuracy standards of the equipment.

Fig 2.2.5 Accuracy Standard

TR Rail Length and Running Accuracy
Fig 2.2.6

Table 2.2.6 TR-Accuracy of Running Parallelism

TR Rail Length(mm)	Accuracy $(\mu \mathrm{m})$				
	N	H	P	SP	UP
$0 \sim 125$	5	3	2	1.5	1
$125 \sim 200$	5	3.5	2	1.5	1
$200 \sim 250$	6	4	2.5	1.5	1
$250 \sim 315$	7	4.5	3	1.5	1
$315 \sim 400$	8	5	3.5	2	1.5
$400 \sim 500$	9	6	4.5	2.5	1.5
$500 \sim 630$	16	11	6	2.5	1.5
$630 \sim 800$	18	12	7	3	2
$800 \sim 1000$	20	14	8	4	2
$1000 \sim 1250$	22	16	10	5	2.5
$1250 \sim 1600$	25	18	11	6	3
$1600 \sim 2000$	28	20	13	7	3.5
$2000 \sim 2500$	30	22	15	8	4
$2500 \sim 3000$	32	24	16	9	4.5
$3000 \sim 3500$	33	25	17	11	5
$3500 \sim 4000$	34	26	18	12	6

Table 2.2.7

Accuracy Standard										
TR 1520						$\begin{array}{lllll}\text { TR } & 25 & 30 & 35\end{array}$				
Accuracy Standard	Normal	High	Precision	Super Precision	$\begin{gathered} \text { Ultra } \\ \text { Precision } \end{gathered}$	Normal	High	Precision	$\begin{gathered} \text { Super } \\ \text { Precision } \end{gathered}$	$\begin{array}{\|c} \text { Ultra } \\ \text { Precision } \end{array}$
Item	N	H	P	SP	UP	N	H	P	SP	UP
Tolerance for height M	± 0.1	± 0.03	$\begin{gathered} 0 \\ -0.03 \end{gathered}$	$\begin{gathered} 0 \\ -0.015 \end{gathered}$	$\begin{gathered} 0 \\ -0.008 \end{gathered}$	± 0.1	± 0.04	$\begin{gathered} 0 \\ -0.04 \end{gathered}$	$\begin{gathered} 0 \\ -0.02 \end{gathered}$	$\begin{gathered} 0 \\ -0.01 \end{gathered}$
Tolerance for height M difference among Linear Guide Block	0.02	0.01	0.006	0.004	0.003	0.02	0.015	0.007	0.005	0.003
Tolerance for rail-to-block lateral distance W2	± 0.1	± 0.03	$\begin{gathered} 0 \\ -0.03 \end{gathered}$	$\begin{gathered} 0 \\ -0.015 \end{gathered}$	$\begin{gathered} 0 \\ -0.008 \end{gathered}$	± 0.1	± 0.04	$\begin{gathered} 0 \\ -0.04 \end{gathered}$	$\begin{gathered} 0 \\ -0.02 \end{gathered}$	$\begin{gathered} 0 \\ -0.01 \end{gathered}$
Tolerance for rail-to -block lateral distance Linear Guide Block	0.02	0.01	0.006	0.004	0.003	0.03	0.015	0.007	0.005	0.003
Running parallelism of Linear Guide Block surface Cl with respect to surface	$\triangle \mathrm{C}$, TR Rail Length and Running Accuracy(Fig 2.2.5)					$\triangle \mathrm{C}$, TR Rail Length and Running Accuracy(Fig 2.2.5)				
Running parallelism of Linear Guide Block surface Dwith respect to surface	$\triangle \mathrm{D}$, TR Rail Length and Running Accuracy(Fig 2.2.5)					$\triangle \mathrm{D}$, TR Rail Length and Running Accuracy(Fig 2.2.5)				
Accuracy Standard										
TR 4555						TR 65				
Accuracy Standard	Normal	High	Precision	$\begin{gathered} \text { Super } \\ \text { Precision } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Ultra } \\ \text { Precision } \\ \hline \end{array}$	Normal	High	Precision	$\begin{gathered} \text { Super } \\ \text { Precision } \end{gathered}$	$\begin{gathered} \text { Ultra } \\ \text { Precision } \\ \hline \end{gathered}$
Item	N	H	P	SP	UP	N	H	P	SP	UP
Tolerance for height M	± 0.1	± 0.05	$\begin{gathered} 0 \\ -0.05 \end{gathered}$	$\begin{gathered} 0 \\ -0.03 \end{gathered}$	$\begin{gathered} 0 \\ -0.02 \end{gathered}$	± 0.1	± 0.07	$\begin{gathered} 0 \\ -0.07 \end{gathered}$	$\begin{gathered} 0 \\ -0.05 \end{gathered}$	$\begin{gathered} 0 \\ -0.03 \end{gathered}$
Tolerance for height M difference among Linear Guide Block	0.03	0.015	0.007	0.005	0.003	0.03	0.02	0.01	0.007	0.005
Tolerance for rail-to-block lateral distance W2	± 0.1	± 0.05	$\begin{gathered} 0 \\ -0.05 \end{gathered}$	$\begin{gathered} 0 \\ -0.03 \end{gathered}$	$\begin{gathered} 0 \\ -0.02 \end{gathered}$	± 0.1	± 0.07	$\begin{gathered} 0 \\ -0.07 \end{gathered}$	$\begin{gathered} 0 \\ -0.05 \end{gathered}$	$\begin{gathered} 0 \\ -0.03 \end{gathered}$
Tolerance for rail-to -block lateral distance Lnear Guide Block	0.03	0.02	0.01	0.007	0.005	0.03	0.025	0.015	0.01	0.007
Running parallelism of Linear Guide Block surface Cl $_{\text {with }}$ respect to surface respectio suace	$\triangle \mathrm{C}$, TR Rail Length and Running Accuracy(Fig 2.2.5)					$\triangle \mathrm{C}$, TR Rail Length and Running Accuracy(Fig 2.2.5)				
Running parallelism of Linear Guide Block surface Diw with respect to surface	$\triangle \mathrm{D}$, TR Rail Length and Running Accuracy(Fig 2.2.5)					$\triangle \mathrm{D}$, TR Rail Length and Running Accuracy(Fig 2.2.5)				

TBIMOTION

2-2-9 Determining the Magnitude of a Preload

What's Preload
Replacing larger rolling elements helps strengthen the entire rigidity of the carriage while there exists clearance with in ball circulation.

Increasing preload would decrease the vibration and reduce the corrosion caused by running back and forth. However, it would also add the workload within those rolling elements. The greater the preload, the greater the inner workload. Therefore, choosing preload has to consider the effect carefully between vibration and preload.

Table 2.2.8 Preload Grade

Grade	Symbol	Preload Force
Slight Clearance	ZF	0
No Preload	Z0	0
Light Preload	Z1	0.02 C
Medium Preload	Z2	0.05 C
Heavy Preload	Z3	0.07 C

Table 2.2.9 TR Series Radial Clearances
Table 2.2.9 TR Series Radial Clearances

Model No. Preload	ZF	Z0	Z1	Z2	Z3
TR15	$5 \sim 12$	$-4 \sim 4$	$-12 \sim-5$	$-20 \sim-13$	$-28 \sim-21$
TR20	$6 \sim 14$	$-5 \sim 5$	$-14 \sim-6$	$-23 \sim-15$	$-32 \sim-24$
TR25	$7 \sim 16$	$-6 \sim 6$	$-16 \sim-7$	$-26 \sim-17$	$-36 \sim-27$
TR30	$8 \sim 18$	$-7 \sim 7$	$-18 \sim-8$	$-29 \sim-19$	$-40 \sim-30$
TR35	$9 \sim 20$	$-8 \sim 8$	$-20 \sim-9$	$-32 \sim-21$	$-44 \sim-33$
TR45	$10 \sim 22$	$-9 \sim 9$	$-22 \sim-10$	$-35 \sim-23$	$-48 \sim-36$
TR55	$11 \sim 24$	$-10 \sim 10$	$-24 \sim-11$	$-38 \sim-25$	$-52 \sim-39$
TR65	$12 \sim 26$	$-11 \sim 11$	$-26 \sim-12$	$-41 \sim-27$	$-56 \sim-42$

Table 2.2.10 The Difference between Interchageability and Non-Interchageability

	Non-Interchangeable					Interchangeable	
Slight Clearance	UP	SP	P	H	N	H	N
Preload					ZF		ZF
			Z1	Z1	Z1	Z1	Z0
	Z2	Z2	Z 0	Z0			
	Z2	Z2	Z2		Z1		
	Z3	Z3	Z3	Z3			

2-2-10 Mounting Location of Grease Nipples
The standard location of the grease nipple is at both ends of the block, but the nipple can be mounted at each side of block. For lateral installation, we recommend that the nipple be mounted at the non-reference side, otherwise please contact us. It is possible to perform lubrication by using the oil-piping joint.

Fig 2.2.7 Mounting Location

Table 2.2.11 The Lubricant Amountfor a Table 2.2.11 Block Filled with Grease

Size	Grease $\left(\mathrm{cm}^{3}\right)$
TR15	1.3
TR20	2.5
TR25	2.5
TR30	7
TR35	9
TR45	15.2
TR55	40
TR65	75

Table 2.2.12 Oil Refilling Rate

Size	Oil refilling rate $\left(\mathrm{cm}^{2} / \mathrm{hr}\right)$
TR15	0.2
TR20	0.2
TR25	0.3
TR30	0.3
TR35	0.3
TR45	0.4
TR55	0.5
TR65	0.6

Table 2.2.13 Grease Nipples

Table2.2.14 Types of Lubrication Coupler

Model	TR15	TR20, 25, 30, 35	TR45, 55, 65
	SD-037		
			SD-042
		SD-043 PT $1 / 8$	SD-044

2-2-12 J-Flow System

When the linear guide sets up on the side mount as the figure shows. It is hard to equally distributed the lubrication on the race groove due to gravity. The common way to solve this is to grease from the side of the block; however such method is almost impossible when the application is already space limited. TBI Motion provides an unique solution to overcome the dilema by implement the J-Flow System. The J-Flow System is equipped with two optional screw-tightening lubrication spot on both ends of linear block with the special internal lubricating path which allows the lubrication to travel in both direction by simply tightenning or losenign the lubrication screw.

Fig 2.2.8 J-Flow System

Fig 2.2.9 The oil sail against the gravity to lubricate the circulation path

Fig 2.2.10 The Oil flows downward through optional screwin spot when the feeding stops

2-2-13 Strong Dust-proof/Self-Lubricating Linear Guide Series Accessory
TBI MOTION Linear Guide with Double-lip End Seal
Characteristics of TBI MOTION Dust-proof End Seal

1. Seal Function : Seal design from single-lip to double-lips to prevent more dust go into the block.
2. Hardness : Heat treatment for end seals to make hardness higher in order to absorb high impact when operation
3. Environment : Better solution for dust-proof when using double seals in environment with high pollution.
4. Lifetime Extension : Double-lip seal prevents dust go into the block and provides a solution for block damage due to dust issue

Characteristics of TBI MOTION Metal Scraper
The scraper removes high-temperature iron chips or dust entering the block.
Characteristics of TBI MOTION Self-Lubricating Linear Guide Series
There is a Felt accessory between end cap and seals. Felt with oil will lubricate the rail when operating; grease nipple is not needed. The design is shownas below.

Example
Fig 2.2.11
WZ (Top Seal+Bottom Seal+Two Double-lip

A82

Lifetime Comparison

As shown in the chart, the lifetime of self-lubricating blocks is one time longer than that of standard series blocks.

Table 2.2.15 Test

	Control Group	Experiment Group
Test Environment	Standard	Self-Lubricating
Dimension	TRH20VL	TRH20VL
Rating Load	1000 kg	1000 kg
Speed	$6 \mathrm{~m} / \mathrm{min}$	$6 \mathrm{~m} / \mathrm{min}$
Travel Length	600 mm	600 mm

※ No more grease is added during the test for both standard series and self-lubricating series

Instructions of Self-Lubricating Block Felt
The felt has already filled in with lubrication when it is ready to use. It is suggested to soak the wool felt in the oil tank for more than 8 hours before using. The wool felt can be refilled with any approved lubrication oil depending on the requirement (ISOVG $32 \sim 68$).

Characteristics of Suggested Oil :
(1) Form a strong oil film.
(2) Reduce wear as much as possible
(3) Have high wear resistance.
(4) Have high thermal stability.
(5) Be noncorrosive
(6) Be highly rust-preventive
(7) Be free from dust and some moisture.

Characteristics of Block Felt
(1) Easy Assembly and Removal - Only screws are needed when assemble and disassemble the accessory
(2) Environmentally Friendly - No need of grease nipple and other equipment to save energy.
(3) Low Maintenance - Optimized oil usage prevents leaking, making it the ideal solution for clean working environments. Self-lubricating block is maintenance free in most applications.
(4) Strong Dust-proof - With dust-proof accessory, lifetime will be extended

The Suggested Operating Temperature
The suggested operating temperature is between $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. If operating temperature is over suggested criteria, please contact TBI MOTION.

Self-Lubricating Linear Guide Oil Cassette Unit

Self lubrication system is designed with lubrication mechanism between end capand wiper. The structure unit is shown asfollow. The Cassette unit is comprised with fluid channel which is soaked with oil and act to release the lubricants thoroughly during operation. With this smart and simple design, the linear guide can be lubricated without extra oil feeding units thus minimize unnecessary parts and waste which triggers higher cost and higher risk in mounting error.

Fig 2.2.13 Installation Method

Fig 2.2.14 Cassette Unit

Characteristics of Self-Lubricating Linear Oiler Unit
(1) No extra oil feeding unit is required
(2) Harsh demand in cleanness of operational environment.
(3) For applications requiring long service life without relubrication for long interval.
(4) Equal distribution in lubrication release in all direction.
(5) Optional lubricants is avalible to fits individual demand.
(6) Enhanced wiping ability when equipped with optional seals.

Applications

(1) Machine Too
(2) Industrial Automation : Plastic and rubber manufacture, Typography, Paper, Textiles, Food
(3) Electronic and Component manufacturing : Semiconductor, X-Y Platform, Measurement

Equipment
(4) Others : Medical Equipment, Conveyers

Characteristics of Lubrication Oi

The Self lubrication cassette is filled in with Synthetic Hydro Carbon oil (SHC). The performance of the oil is list as follows
(1) Solvent refined oil without wax and impurity.
(2) High grade of consistency in extreme temperature.
(3) Corrosion free to metal and high polymer.
(4) Unique weaven texture provides oil film on the contact point to prevent wear.
(5) High chemical stability and durability.

Table 2.2.16

Character	Color		Clear Yellow
Ratio	$15 / 4^{\circ} \mathrm{C}$		0.860
Viscosity	$100^{\circ} \mathrm{C}$	c S t	137.47
	$40^{\circ} \mathrm{C}$		1570.68
Viscosity Index		120	
Fluid	${ }^{\circ} \mathrm{C}$	-30	
Flash Point	${ }^{\circ} \mathrm{C}$	243	
Evaporation Rate	$100^{\circ} \mathrm{C} \times 24 \mathrm{H} \mathrm{r}$	$<0.15 \%$	
Copper Corrosion Test	$100^{\circ} \mathrm{C} \times 24 \mathrm{H} \mathrm{r}$	Pass	
Resin Test	$80^{\circ} \mathrm{Cx} 24 \mathrm{H} \mathrm{r}$		
Polystyrene	Pass		
Operation Temperature $\left({ }^{\circ} \mathrm{C}\right)$		$-30 \sim 160$	

2-2-14 Dust-proof Accessory

If the following accessories are needed please add the code followed by the model number. Special Option : Steel end seal, Steel end cap, Cover Strip, contactTBI MOTION Commissioner.

Stndard Accessories:

End seal and Bottom seal
To prevent life reduction caused by iron chips or dust entering the block.

Other Accessories :

Top Seal
Efficiently avoid dust from the surface of rail or tapping hole getting inside the block.

Double end seal
Enhances the wiping effect, foreign matter can be completely wiped off.

Double-lip end seals
Double-lip end seal is suitable for environment with high pollution

Characteristics of TBI MOTION Metal Scraper
The scraper removes high-temperature iron chips or dust entering the block.

Table 2.2.17 Codes of Accessories

※After selection of different accessories increase the overall length of the slider, see table 2.2.18 Felt
Double-lip end seal is suitable for environment with high pollution. Felt lubricates the ball track of the railto increase the lifetime. This accessory is suitable for light rating load environment.

Oiler
After installation can enhance the long lubricating effect.

TBI TBIMOTION

Table 2.2.18 TR Type Block Length of Accessories
Unit : mm

Type								
Length of Block Code	TR15	TR20	TR25	TR30	TR35	TR45	TR55	TR65
S	39.3	47.8	56.2	66.4	74.7	-	-	-
N	55.9	TRS(66.7) TRH(74)	80	95.3	108	124.5	-	-
L	64.4	79	92	106	122	140	163	197
E	-	98	109	131	152	174	201.1	256.5

Two Double-lip end seals (ZN)									
Length Type of Block Code	TR15	TR20	TR25	TR30	TR35	TR45	TR55	TR65	
S	47.9	58.4	65.6	76.4	84.7	-	-	-	
N	64.5	TRS(77.3) TRH(84.6)	89.4	105.2	118.2	134.5	-	-	
L	73.2	89.6	101.4	116	132	150	173	208	
E	-	108.6	118.4	141	162	184	211.1	267.5	

Double-lip end seals+Felt (WW, WU)								
Length Type of Block Code	TR15	TR20	TR25	TR30	TR35	TR45	TR55	TR65
S	51.8	60.9	68.7	78.9	87.2	-	-	-
N	68.4	TRS(79.8) TRH(87.1)	92.5	107.7	120.7	136	-	-
L	76.9	92.1	104.5	118.5	134.5	151.5	-	-
E	-	111.1	121.5	143.5	164.5	185.5	-	-

Two Double-lip end seals+Felt (WZ)									
Length Type of Block Code	TR15	TR20	TR25	TR30	TR35	TR45	TR55	TR65	
S	59.4	69.9	77.1	87.9	96.2	-	-	-	
N	76	TRS(88.8) TRH(96.1)	100.9	116.7	129.5	146	-	-	
L	84.5	101.1	112.9	127.5	143.5	161.5	-	-	
E	-	120.1	129.9	152.5	173.5	195.5	-	-	

TBIMOTION.

Table 2.2.19 TR Type Block Length of Accessories
Unit : mm

Double-lip end seals+Metal Scraper (SU)								
	TR15	TR20	TR25	TR30	TR35	TR45	TR55	TR65
S	47.5	57.4	65.5	75.8	80.7	-	-	-
N	64.1	$\begin{aligned} & \hline \text { TRS(76.3) } \\ & \text { TRH(83.6) } \end{aligned}$	89	99.3	114	133.5	-	-
L	72.6	88.6	101	115.4	128	149	172	208
E	87.6	107.6	118	140.4	158	183	210.1	267.5

Two Double-lip end seals+Metal Scraper (SZ)									
Length of Block Code	TR15	TR20	TR25	TR30	TR35	TR45	TR55	TR65	
S	55.1	66.4	73.9	84.8	89.7	-	-	-	
N	71.7	TRS(85.3) TRH(92.6)	97.4	108.3	123	143.5	-	-	
L	80.2	97.6	109.4	124.4	137	159	183	219	
E	95.2	116.6	126.4	149.4	167	193	221.1	278.5	

Double-lip end seals+Felt+Metal Scraper (DU)								
Length of Block Code	TR15	TR20	TR25	TR30	TR35	TR45	TR55	TR65
S	59	68.9	77	87.3	92.2	-	-	-
N	75.6	TRS(87.8) TRH(95.1)	100.5	110.8	125.5	145	-	-
L	84.1	100.1	112.5	126.9	139.5	160.5	-	-
E	99.1	119.1	129.5	151.9	169.5	194.5	-	-

Two Double-lip end seals+Felt+Metal Scraper (DZ)								
Length of Block Code	TR15	TR20	TR25	TR30	TR35	TR45	TR55	TR65
S	66.6	77.9	85.4	96.3	101.2	-	-	-
N	83.2	TRS(96.8) TRH(104.1)	108.9	119.8	134.5	155	-	-
L	91.7	109.1	120.9	135.9	148.5	170.5	-	-
E	106.7	128.1	137.9	160.9	178.5	204.5	-	-

Double-lip end seals+Oiler (BN)										
Length of Block Code	TR15	TR20	TR25	TR30	TR35	TR45	TR55	TR65		
S	55.6	66.4	74.2	84.4	92.7	-	-	-		
N	71.7	TRS(85.3) TRH(92.6)	98	113.3	126	145	-	-		
L	80.7	97.6	110	124	128	160.5	-	-		
E	95.7	116.6	127	149	170	194.5	-	-		

Dustproof Rails
Once the Linear Guide in the cutting machine is in operating, dust and foreign matter that enter the Linear Guide may cause abnormal wear and shorten the service life.

Linear Guide rail mounting-hole cap : Chips and foreign matter clogging the mounting holes of a Linear Guide rail may enter the Linear Guide block. To prevent from this situation, the mounting holes must be closed with dedicated caps, which must be installed to flush with the Linear Guide rail top surface. To insert a dedicated cap into a mounting

Fig 2.2.15 Dust-proof
hole, drive the cap in using a plastic hammer with a flat metal pad placed on the cap until it is flush with the Linear Guide rail top surface.

Rail with tapped holes
Fixing a rail with tapped hole is different from fixing a standard one. A major strength of it is the shape of the tapped hole ; dust and chippings would not enter.

2-2-15 Friction

The figure showed in the chart is the maximum friction.

Table 2.2.20 End Cap friction rate Unit : kgf

Model No.	End Cap friction rate(Max)
TR15	0.25
TR20	0.35
TR25	0.4
TR30	0.5
TR35	0.7
TR45	1.3
TR55	1.6
TR65	2

TBIMOTION
A92

2-2-16 Mounting-Surface Dimensional Tolerance

TR series Linear Guide has a Four-Way Equal-Load design, a slight dimensional error in the mounting surface can be absorbed by the natural self-adjusting capability of the product, thus ensuring smoothy linear motion. In the table below are the dimensional tolerances for the mounting surface of TR Linear Guide.

Fig 2.2.16

Table 2.2.21
Unit : $\mu \mathrm{m}$

Model No.	Tolerance for Parallelism Between Two Axis(e1)					Tolerance for Parallelism Between Two Axis(e2)				
	Z3	Z2	Z1	Z0	ZF	Z3	Z2	Z1	Z0	ZF
TR15			18	25	35			85	130	190
TR20		18	20	25	35		50	85	130	190
TR25	15	20	22	30	42	60	70	85	130	195
TR30	20	27	30	40	55	80	90	110	170	250
TR35	22	30	35	50	68	100	120	150	210	290
TR45	25	35	40	60	85	110	140	170	250	350
TR55	34	45	50	70	98	130	170	210	300	410
TR65	42	55	60	80	105	150	200	250	350	460

2-3 TM Miniature Linear Guide

2-3-1 The Characteristics of TM Series
Dust-Proof Design
The stainless bottom seal is the innovative new design of TBI Motion TM series. It prevents effectively the abnormal chips getting into the ball track from the bottom side of the block and keep the good running performance and extend the life time of the slider because the friction is low by keeping some small backlash between the slider and rail.

Standard end seals provide extreme protection from dust, metal scrapers to maintain long service life and lower maintenance period. Unique low friction seal lips provide best smoothness and lower friction.

Fig 2.3.1

High Tensile Performance Stainless Steel Reinforcement Plate Dual fully covered stainless steel plates design delivers the best coverage for plastic on each ends. Stainless steel screws are used to strength the rigidity, protection with end cap in order to sustain higher operational speed $\mathrm{Vmax}=5 \mathrm{~m} / \mathrm{s}, \alpha \max =300 \mathrm{~m} / \mathrm{s}^{2}$, When linear block is equipped with reinforcement plates and Dust-proof seal, it can also function as scraper.

Fig 2.3.2
High Loading and Moment Capacity Performance TM Miniature Linear Guide series uses two row re-circulating methods with Gothic 45° contact angle on the rail groove to achieve equal load capacity in four directions. Larger steel balls are used to enhance the loading and torsion resistance performance in limited space.

Fig 2.3.3

Fig 2.3.4 The Gothic 45° fourThe Gothic 45° four-
direction load structure

2-3-2 The Structure of TM-series

Recirculation system : End cap + Recirculation tube + ball retainer
Sealing system : Side + bottom system

Fig 2.3.5

2-3-3 Accuracy

TM Miniature Linear Guide provides P, H, N three accuracy grades for customer to choose

Table 2.3.1

	Accuracy $(\mu \mathrm{m})$		Precision P	High H	Normal N
	Tolerance of Height H	H	± 10	± 20	± 40
Variation of height with different block on same spot of the rail	$\triangle \mathrm{H}$	7	15	25	
Tolerance of width W_{2}	$\mathrm{~W}_{2}$	± 15	± 25	± 40	
	Variation with width on different block on same spot of the rail	$\triangle \mathrm{W}_{2}$	10	20	30

Speed

The maximum acceleration of TM- N can reach $V \max >5 \mathrm{~m} / \mathrm{s}, \alpha$ max $=300 \mathrm{~m} / \mathrm{s}^{2}\left(60 \mathrm{~m} / \mathrm{s}^{2}\right.$ before preload).

Table 2.3.6 Running parallel precision slide relative to the rails datum

2-3-4 Preload

Preload Value
TM Miniature Linear Guide offers three preloading level which are ZF, Z0, Z1. A proper preloading will enhance performance on stiffness, precision, and torsion resistance ; however an improper preloading will lower service life and increase friction.

Table 2.3.2 Table

Preload Grade	Pressure	Preload $(\mu \mathrm{m})$				Applications
		9	12	15		
ZF	Zero Preload	$+4 \sim 0$	$+4 \sim 0$	$+5 \sim 0$	$+6 \sim 0$	Running smoothly
Z0	Slight Clearance	$+2 \sim 0$	$+2 \sim 0$	$+2 \sim 0$	$+3 \sim 0$	Precision applications, Running smoothly
Z1	Light Preload	$0 \sim-3$	$0 \sim-4$	$0 \sim-5$	$0 \sim-6$	High steel, Precision applications, Running smoothly

Permissible Operational Temperature
The TM Miniature Linear Guide is sufficient to operate between $-40^{\circ} \mathrm{C} \sim+80^{\circ} \mathrm{C}$. For sudden temperature rise the temperature can reach up to $+100^{\circ} \mathrm{C}$.

2-3-5 Types of Lubrication Grease
When a linear guide is well lubricated, the contact point between rail and rolling steel balls will be separated by 1 micro meter. Therefore, a good lubrication increases the life
of linear guide.

Clean room Lubrication
Suitable for low dust environment.

Lubrication

Model	Lubrication amount (CC)	Model	Lubrication amount (CC)
TM07NN	0.3		
TM07NL	0.4		
TM09NN	0.4	TM09WN	0.4
TM09NL	0.6	TM09WL	0.6
TM012NN	0.9	TM012WN	0.9
TM012NL	1.3	TM012WL	1.3
TM015NN	1.4	TM015WN	1.4
TM015NL	2.0	TM015WL	2.0

General usage, ISO V32~68
※If Special oil is required please contact TBI MOTION. ※

2-3-6 Order Information
Customized Requirement :

Table 2.3.4

Rail Length	Dimension			
	TM7	TM9	TM12	TM15
Pitch(mm)	15	20	25	40
L2, L3 min	3	4	4	4
L2, L3 max	10	20	20	35
Lmax	1300	1300	1300	1300

※If Special dimension is required please contact TBI MOTION . ※

2-3-7 Nominal Model Code of TM Type
Length of Block
Perform joint treatment when required lengths exceed 1300. Please contact TBI MOTION
for detailed information.

Model No.	Assembly			Rail(mm)								Block(mm)					
	H	W2	E	W	B	J	T	L	L1	Qxe	\varnothing	W1	H1	$\varnothing 口$	h	Ød	F
TM07NN	8	5	1.5	17	12	8	2.25	23	12.3	M2x2	1.3	7	4.7	4.2	2.3	2.4	15
TM07NL	8	5	1.5	17	12	13	2.25	31	20.3	M2x2	1.3	7	4.7	4.2	2.3	2.4	15
TM09NN	10	5.5	2.2	20	15	10	3.62	30.5	19.8	M 3×3	1.3	9	5.5	6	3.3	3.5	20
TM09NL	10	5.5	2.2	20	15	16	3.62	40.8	30.1	M3x3	1.3	9	5.5	6	3.3	3.5	20
TM12NN	13	7.5	3	27	20	15	4.54	35	20.6	M 3×3.5	1.3	12	7.5	6	4.5	3.5	25
TM12NL	13	7.5	3	27	20	20	4.54	47.5	33.1	M3x3.5	1.3	12	7.5	6	4.5	3.5	25
TM15NN	16	8.5	4	32	25	20	5.86	43	27	M 3×5	1.3	15	9.5	6	4.5	3.5	40
TM15NL	16	8.5	4	32	25	25	5.86	60	44	M3x5	1.3	15	9.5	6	4.5	3.5	40

TM-W Series Specifications

Model No.	Assembly (mm)			Rail(mm)								Block(mm)						
	H	W2	E	W	B	J	T	L	L1	Qxe	\varnothing	W1	H1	$\varnothing 口$	h	$\varnothing \mathrm{d}$	F	P
TM09WN	12	6	3.4	30	23	12	4	39.1	26.7	M 3×3	1.3	18	7.3	6	4.5	3.5	30	
TM09WL	12	6	3.4	30	23	24	4	50.7	38.3	M 3×3	1.3	18	7.3	6	4.5	3.5	30	
TM12WN	14	8	3.9	40	28	15	4.5	44.4	29	M 3×3.5	1.3	24	8.5	8	4.5	4.5	40	
TM12WL	14	8	3.9	40	28	28	4.5	59.4	44	M 3×3.5	1.3	24	8.5	8	4.5	4.5	40	
TM15WN	16	9	4.1	60	45	20	4.8	55.3	38.5	M4x4.5	1.3	42	9.5	8	4.5	4.5	40	23
TM15WL	16	9	4.1	60	45	35	4.8	74.4	57.6	M4x4.5	1.3	42	9.5	8	4.5	4.5	40	23

Model No.	$\underset{(\mathrm{kgf})}{\text { Loading }^{2}}$		Static Permissible Moment					Weight	
			Mx(kgf-mm)	My(kgf-mm)		Mz(kgfmm)		$\underset{(\mathrm{kg})}{\text { Block }}$	$\underset{\substack{\text { Rail } \\(\mathrm{kg} / \mathrm{m})}}{ }$
	C	Co	Single Block	Single Block	Double Block	Single Block	Double Block		
TM07NN	144	204	745	232	3,234	232	3,234	0.005	0.21
TM07NL	220	374	1,367	849	7,261	849	7,261	0.009	
TM09NN	220	374	1,713	849	7,117	849	7,117	0.013	0.32
TM09NL	299	579	2,648	2,099	14,174	2,099	14,174	0.020	
TM12NN	381	536	3,269	1,094	12,391	1,094	12,391	0.024	0.61
TM12NL	555	919	5,604	3,437	26,857	3,437	26,857	0.039	
TM15NN	581	834	6,336	2,316	23,096	2,316	23,096	0.048	1
TM15NL	860	1,459	11,088	7,527	52,908	7,527	52,908	0.080	

Model No.	$\underset{(\mathrm{kgf})}{\text { Load Rating }}$		Static Permissible Moment					Weight	
			Mx(kgf-mm)	My(kgf-mm)		Mz(kgf-mm)		$\underset{(\mathrm{kg})}{\mathrm{Block}}$	$\underset{\substack{\text { (kg/m) }}}{\text { Rail }}$
	C	Co	Single Block	Single Block	Double Block	Single Block	Double Block		
TM09WN	208	368	4,645	1,621	12,205	1,621	12,205	0.03	0.97
TM09WL	260	509	7,123	3,905	23,411	3,905	23,411	0.043	
TM12WN	313	530	10,190	2,864	23,153	2,864	23,153	0.05	1.47
TM12WL	415	796	15,748	7,083	46,164	7,083	46,164	0.076	
TM15WN	517	856	26,387	5,459	42,543	5,459	42,543	0.116	2.85
TM15WL	686	1,283	41,779	14,144	87,256	14,144	87,256	0.175	

